Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Somatic mutations of the mitochondrial genome in human colorectal tumours

Abstract

Alterations of oxidative phosphorylation in tumour cells were originally believed to have a causative role in cancerous growth1. More recently, mitochondria have again received attention with regards to neoplasia, largely because of their role in apoptosis and other aspects of tumour biology2,3,4,5,6,7,8. The mitochondrial genome is particularly susceptible to mutations because of the high level of reactive oxygen species (ROS) generation in this organelle, coupled with a low level of DNA repair9,10,11,12. However, no detailed analysis of mitochondrial DNA in human tumours has yet been reported. In this study, we analysed the complete mtDNA genome of ten human colorectal cancer cell lines by sequencing and found mutations in seven (70%). The majority of mutations were transitions at purines, consistent with an ROS-related derivation. The mutations were somatic, and those evaluated occurred in the primary tumour from which the cell line was derived. Most of the mutations were homoplasmic, indicating that the mutant genome was dominant at the intracellular and intercellular levels. We showed that mitochondria can rapidly become homogeneous in colorectal cancer cells using cell fusions. These findings provide the first examples of homoplasmic mutations in the mtDNA of tumour cells and have potential implications for the abnormal metabolic and apoptotic processes in cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of mtDNA mutations.
Figure 2: Somatic cell fusions.

Similar content being viewed by others

References

  1. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    Article  CAS  Google Scholar 

  2. Kroemer, G., Zamzami, N. & Susin, S.A. Mitochondrial control of apoptosis. Immunol. Today 18, 45–51 (1997).

    Article  Google Scholar 

  3. Korsmeyer, S.J., Yin, X.M., Oltvai, Z.N., Veis-Novack, D.J. & Linette, G.P. Reactive oxygen species and the regulation of cell death by the Bcl-2 gene family. Biochim. Biophys. Acta 1271, 63–66 (1995).

    Article  Google Scholar 

  4. Rudin, C.M. & Thompson, C.B. Apoptosis and disease: regulation and clinical relevance of programmed cell death. Annu. Rev. Med. 48, 267–281 (1997).

    Article  CAS  Google Scholar 

  5. Wang, H.G. & Reed, J.C. Mechanisms of Bcl-2 protein function. Histol. Histopathol. 13, 521– 530 (1998).

    CAS  PubMed  Google Scholar 

  6. Cavalli, L.R. & Liang, B.C. Mutagenesis, tumorigenicity, and apoptosis: are the mitochondria involved? Mutat. Res. 398, 19–26 (1998).

    Article  CAS  Google Scholar 

  7. Chen, L.B. Mitochondrial membrane potential in living cells. Annu. Rev. Cell Biol. 4, 155–181 (1988).

    Article  CAS  Google Scholar 

  8. Augenlicht, L.H. & Heerdt, B.G. Modulation of gene expression as a biomarker in colon. J. Cell. Biochem. Suppl. 16G, 151–157 (1992).

    Article  CAS  Google Scholar 

  9. Lightowlers, R.N., Chinnery, P.F., Turnbull, D.M. & Howell, N. Mammalian mitochondrial genetics: heredity, heteroplasmy and disease. Trends Genet. 13, 450–455 (1997).

    Article  CAS  Google Scholar 

  10. Beal, M. Mitochondria, free radicals, and neurodegeneration. Curr. Opin. Neurobiol. 6, 661–666 (1996).

    Article  CAS  Google Scholar 

  11. Li, Y., Zhou, H., Stansbury, K. & Trush, M. Role of reactive oxygen species in multistage carcinogenesis. in Oxygen radicals and the disease process (eds Thomas, C. & Kalyanaraman, B.) 237–277 (Harwood Academic Publishers, Amsterdam, The Netherlands, 1997).

    Google Scholar 

  12. Croteau, D.L. & Bohr, V.A. Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. J. Biol. Chem. 272, 25409–25412 (1997).

    Article  CAS  Google Scholar 

  13. Parfait, B., Rustin, P., Munnich, A. & Rotig, A. Co-amplification of nuclear pseudogenes and assessment of heteroplasmy of mitochondrial DNA mutations. Biochem. Biophys. Res. Commun. 247, 57–59 (1998).

    Article  CAS  Google Scholar 

  14. Beckman, K.B. & Ames, B.N. Oxidative decay of DNA. J. Biol. Chem. 272, 19633–19636 (1997).

    Article  CAS  Google Scholar 

  15. Cadet, J., Berger, M., Douki, T. & Ravanat, J.L. Oxidative damage to DNA: formation, measurement, and biological significance. Rev. Physiol. Biochem. Pharmacol. 131, 1– 87 (1997).

    CAS  PubMed  Google Scholar 

  16. Wallace, D.C., Brown, M.D., Melov, S., Graham, B. & Lott, M. Mitochondrial biology, degenerative diseases and aging. Biofactors 7, 187–190 (1998).

    Article  CAS  Google Scholar 

  17. Shay, J. & Ishii, S. Unexpected nonrandom mitochondrial DNA segregation in human cell hybrids. Anticancer Res. 10, 279–284 (1990).

    CAS  PubMed  Google Scholar 

  18. Lengauer, C., Kinzler, K.W. & Vogelstein, B. Genetic instability in colorectal cancers. Nature 386, 623–627 (1997).

    Article  CAS  Google Scholar 

  19. Khrapko, K. et al. Mitochondrial mutational spectra in human cells and tissues. Proc. Natl Acad. Sci. USA 94, 13798– 13803 (1997).

    Article  CAS  Google Scholar 

  20. Beckman, K. & Ames, B. Detection and quantification of oxidative adducts of mitochondrial DNA. Methods Enzymol. 264, 442–453 (1996).

    Article  CAS  Google Scholar 

  21. Welter, C., Kovacs, G., Seitz, G. & Blin, N. Alteration of mitochondrial DNA in human oncocytomas. Genes Chromosomes Cancer 1, 79–82 (1989).

    Article  CAS  Google Scholar 

  22. Yamamoto, H. et al. Significant existence of deleted mitochondrial DNA in cirrhotic liver surrounding hepatic tumor. Biochem. Biophys. Res. Commun. 182, 913–920 (1992).

    Article  CAS  Google Scholar 

  23. Burgart, L.J., Zheng, J., Shu, Q., Strickler, J.G. & Shibata, D. Somatic mitochondrial mutation in gastric cancer. Am. J. Pathol. 147, 1105–1111 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tallini, G., Ladanyi, M., Rosai, J. & Jhanwar, S. Analysis of nuclear and mitochondrial DNA alterations in thyroid and renal oncocytic tumour. Cytogenet. Cell. Genet. 66, 253–259 (1994).

    Article  CAS  Google Scholar 

  25. Heerdt, B.G., Chen, J., Stewart, L.R. & Augenlicht, L.H. Polymorphisms, but lack of mutations or instability, in the promotor region of the mitochondrial genome in human colonic tumors. Cancer Res. 54, 3912–3915 (1994).

    CAS  PubMed  Google Scholar 

  26. Wallace, D.C. Mitochondrial DNA sequence variation in human evolution and disease. Proc. Natl Acad. Sci. USA 91, 8739– 8746 (1994).

    Article  CAS  Google Scholar 

  27. Attardi, G., Yoneda, M. & Chomyn, A. Complementation and segregation behavior of disease-causing mitochondrial DNA mutations in cellular model systems. Biochim. Biophys. Acta 1271, 241–248 (1995).

    Article  Google Scholar 

  28. Chee, M. et al. Accessing genetic information with high-density DNA arrays. Science 274, 610–614 (1996).

    Article  CAS  Google Scholar 

  29. Parsons, R. et al. Microsatellite instability and mutations of the transforming growth factor b type II receptor gene in colorectal cancer. Cancer Res. 55, 5548–5550 (1995).

    CAS  Google Scholar 

  30. Jen, J. et al. Allelic loss of chromosome 18q and prognosis in colorectal cancer. N. Engl. J. Med. 331, 213– 221 (1994).

    Article  CAS  Google Scholar 

  31. Armour, J.A., Neumann, R., Gobert, S. & Jeffreys, A.J. Isolation of human simple repeat loci by hybridization selection. Hum. Mol. Genet. 3, 599–665 (1994).

    Article  CAS  Google Scholar 

  32. Hofhaus, G. & Attardi, G. Efficient selection and characterization of mutants of a human cell line which are defective in mitochondrial DNA-encoded subunits of respiratory NADH dehydrogenase. Mol. Cell. Biol. 15, 964–974 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Clayton Fund, the American Cancer Society and NIH grants CA 43460, CA 57345, C A67409, C72160, CA 43703, CA 59366, ES03760 and ES03819.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert Vogelstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polyak, K., Li, Y., Zhu, H. et al. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat Genet 20, 291–293 (1998). https://doi.org/10.1038/3108

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/3108

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing