Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The human necdin gene, NDN, is maternally imprinted and located in the Prader-Willi syndrome chromosomal region

Abstract

Prader-Willi syndrome (PWS) is a neurogenetic disorder that results from the absence of a normal paternal contribution to the 15q11–13 region1–3. The clinical manifestations of PWS are a transient severe hypotonia in the newborn period, with mental retardation, hypogonadism and obesity observed later in development4. Five transcripts with exclusive expression from the paternal allele have been isolated, but none of these has been shown to be involved in PWS5,6. In this study, we report the isolation and characterization of NDN, a new human imprinted gene. NDN is exclusively expressed from the paternal allele in the tissues analysed and is located in the PWS region. It encodes a putative protein homologous to the mouse brain-specific NECDIN protein7, NDN; as in mouse, expression in brain is restricted to post-mitotic neurons. NDN displays several characteristics of an imprinted locus, including allelic DNA methylation and asynchronous DNA replication. A complete lack of NDN expression in PWS brain and f ibroblasts indicates that the gene is expressed exclusively from the paternal allele in these tissues and suggests a possible role of this new gene in PWS.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nicholls, R.D., Knoll, J.H.M., Butler, M.G., Karam, S. & Lalande, M. Genetic imprinting suggested by maternal heterodisomy in non-deletion Prader-Willi syndrome. Nature. 342, 281–285 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Robinson, W.P. et al. Molecular, cytogenetic, and clinical investigations of Prader-Willi syndrome patients. Am. J. Hum. Genet. 49, 1219–1234 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Mascari, M.J. et al. Molecular diagnosis of Prader-Willi syndrome. N. Engl. J. Med. 326, 1599–1607 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Holm, V., Cassidy, S., Butler, M., Hanchett, J. & Greenberg, F. Prader-Willi syndrome: consensus diagnostic criteria. Pediatrics. 91, 398–402 (1993).

    CAS  PubMed  Google Scholar 

  5. Lalande, M. Parental imprinting and human disease. Annu. Rev. Genet. 30, 173–195 (1997).

    Article  Google Scholar 

  6. Ning, Y. et al. Identification of a novel paternally expressed transcript adjacent to snRPN in the Prader-Willi region. Genome Res. 6, 742–746 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Maruyama, K., Usami, M., Aizawa, T. & Yoshikawa, K. A novel brain-specific mRNA encoding nuclear protein (Necdin) expressed in neurally differentiated embryonal carcinoma cells. Biochem. Biophys. Res. Com. 178, 291–296 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Jay, P. et al. Isolation and regional mapping of cDNAs expressed during early human development. Genomics 39, 104–108 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Mutirangura, A. et al. A complete YAC contig of the Prader-Willi/Angelman chromosome region (15q11–q13) and refined localization of the SNRPN gene. Genomics 18, 546–552 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Horsthemke, B., Dittrich, B. & Buiting, K. Parent-of-origin-specific DNA methylation and imprinting mutations on human chromosome 15. in Genomic Imprinting: Causes and Consequences (eds Ohlsson, R. et al.) 295–308 (Cambridge University Press, Cambridge, UK, 1995).

  11. LaSalle, J. & Lalande, M. Domain organization of allele-specific replication within the GABRB gene cluster requires a biparental 15q11–13 contribution. Nature Genet. 9, 386–395 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Vergnaud, G. et al. The use of synthetic tandem repeats to isolate new VNTR loci: cloning of a human hypermutable sequence. Genomics 11, 135–144 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Aizawa, T., Maruyama, K., Kondo, H. & Yoshikawa, K. Expression of NECDIN, an embryonal carcinoma-derived nuclear protein, in developing mouse brain. Dev. Brain Res. 68, 265–274 (1992).

    Article  CAS  Google Scholar 

  14. Maruyama, E. Biochemical characterization of mouse brain necdin. Biochem. J. 314, 895–901 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Uetsuki, T., Tagaki, K., Sugiura, H. & Yoshikawa, K. Structure and expression of the mouse Necdin gene. J. Biol. Chem. 12, 918–924 (1996).

    Article  Google Scholar 

  16. Hayashi, Y., Matsuyama, K., Tagaki, K., Sugiura, H. & Yoshikawa, K. Arrest of cell growth by necdin, a nuclear protein expressed in postmitotic neurons. Biochem. Biophys. Res. Com. 213, 317–324 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Watrin, F. et al. The mouse Necdin gene is expressed from the paternal allele only and lies in the 7C region of the mouse chromosome 7, a region synteny to the Prader-Willi syndrome region, fur. J. Hum. Genet. (in the press).

  18. Glenn, C.C. et al. Gene structure, DNA methylation, and imprinted expression of the human SNRPN gene. Am. J. Hum. Genet. 58, 335–346 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sun, Y. et al. Breakage in the SNRPN locus in a balanced 46,XY,t(15;19) Prader-Willi syndrome patient. Hum. Mol. Genet. 5, 517–524 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Schulze, A. et al. Exclusion of SNRPN as a major determinant of Prader-Willi syndrome by a translocation breakpoint. Nature Genet. 12, 452–454 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Huntriss, D.J., Barr, J.A., Horn, D.A., Williams, D.G. & Latchman, D.S. Mice lacking Snrpn expression show normal regulation of neuronal alternative splicing events. Mol. Biol. Rep. 20, 19–25 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Clayton-Smith, J. Further evidence for dominant inheritance at the chromosome 15q11-q13 locus in familial Angelman syndrome. Am. J. Med. Genet. 44, 256–260 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Mutirangura, A., Kuwano, A., Ledbetter, S.A., Chinault, A.C. & Ledbetter, D.H. Dinucleotide repeat polymorphism at the D15S11 locus in the Angelman/Prader–Willi region (AS/PWS) of chromosome 15. Hum. Mol. Genet. 1, 139 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Glatt, K., Sinnett, D. & Lalande, M. The human g-aminobutyric acid receptor subunit b3 and a5 gene cluster in chromosome 15q11–q13 is rich in highly polymorphic (CA)n repeats. Genomics. 19, 157–160 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Rougeulle, C., Glatt, H.,& Lalande, M. The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain. Nature Genet. 17, 14–15 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Walker, A.P. et al. A YAC contig in Xp21 containning the adrenal hypoplasia congenita and glycerol kinase deficiency genes. Hum. Mol. Genet. 1, 579–585 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Ausubel, F.M. et al. eds. Current Protocols in Molecular Biology, 3rd Ed. John Wiley, New York, (1995).

    Google Scholar 

  28. Pinkel, D., Staume, T. & Gray, J.W. Cytogenetic analysis using quantitative, high sensitivity, fluorescence hybridization. Proc. Natl. Acad. Sci. USA. 83, 2934–2938 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bergé-Lefranc, J.-L. et al. Characterization of the human jumonji. gene. Hum. Mol. Genet. 5, 1637–1641 (1996).

    Article  PubMed  Google Scholar 

  30. Gastaldi, M. et al. Increase in mRNAs encoding neonatal II and III sodium channel alpha isoforms during kainate-induced seizures in adult rat hippocampus. Mol. Brain Res. 192, 222–231 (1997).

    Google Scholar 

  31. Saitho, S. et al. Minimal definition of the imprinting center and fixation of a chromosome 15q11-q13 epigenotype by imprinting mutations. Proc. Natl. Acad. Sci. USA. 93, 7811–7815 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françoise Muscatelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jay, P., Rougeulle, C., Massacrier, A. et al. The human necdin gene, NDN, is maternally imprinted and located in the Prader-Willi syndrome chromosomal region. Nat Genet 17, 357–361 (1997). https://doi.org/10.1038/ng1197-357

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1197-357

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing