Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The EWS-WT1 translocation product induces PDGFA in desmoplastic small round-cell tumour

Abstract

Chromosomal translocations resulting in chimaeric transcription factors underlie specific malignancies, but few authentic target genes regulated by these fusion proteins have been identified. Desmoplastic small round-cell tumour (DSRT) is a multiphenotypic primitive tumour characterized by massive reactive fibrosis surrounding nests of tumour cells1. The t(11;22)(p13;q12) chromosomal translocation that defines DSRT produces a chimaeric protein containing the potential transactivation domain of the Ewing-sarcoma protein (EWS) fused to zinc fingers 2–4 of the Wilms tumour suppressor and transcriptional represser WT1 (refs 2,3)- By analogy with other EWS fusion products, the EWS-WT1 chimaera may encode a transcriptional activator whose target genes overlap with those repressed by WT1 (ref. 4). To characterize its functional properties, we generated osteosarcoma cell lines with tightly regulated inducible expression of EWS-WT1. Expression of EWS-WT1 induced the expression of endogenous platelet-derived growth factor–A (PDGFA), a potent secreted mitogen and chemoattractant whose promoter contains the many potential WT1-binding sites5,6. Native PDGFA was not regulated by wild-type WT1, indicating a difference in target gene specificity between this tumour suppressor and its oncogenic derivative. PDGFA was expressed within tumour cells in primary DSRT specimens, but it was absent in Wilms tumours expressing WT1 and Ewing sarcomas with an EWS-Fli translocation. We conclude that the oncogenic fusion of EWS to WT1 in DSRT results in the induction of PDGFA, a potent fibroblast growth factor that contributes to the characteristic reactive fibrosis associated with this unique tumour.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gerald, W.L. et al. Intra-abdominal desmoplastic small round-cell tumor. Am. J. Surg. Pathol. 15, 499–513 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Ladanyi, M. & Gerald, W. Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor. Cancer Res. 54, 2837–2840 (1994).

    CAS  PubMed  Google Scholar 

  3. Gerald, W.L., Rosai, J. & Ladanyi, M. Characterization of the genomic breakpoint and chimeric transcripts in the EWS-WT1 gene fusion in desmoplastic small round cell tumor. Proc. Natl. Acad. Sci. USA 92, 1028–1032 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rauscher, F.J. III The WT1 Wilms tumor gene product: a developmentally regulated transcription factor in the kidney that functions as a tumor suppressor. FASEB J. 7, 896–903 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, Z., Madden, S., Deuel, T. & Rauscher, F. III The Wilms' tumor gene product, WT1, represses transcription of the platelet-derived growth factor A-chain gene.. J. Biol. Chem. 267, 21999–22002 (1992).

    CAS  PubMed  Google Scholar 

  6. Gashler, A. et al. Human platelet-derived growth factor A chain is transcriptionally repressed by the Wilms' tumor suppressor WT1. Proc. Natl. Acad. Sci. USA 89, 10984–10988 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Delattre, O. et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 359, 162–165 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Crozat, A., Åman, P., Mandahl, N. & Ron, D. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature 363, 640–644 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Zucman, J. et al. Combinatorial generation of variable fusion proteins in the Ewing family of tumours. EMBO J. 12, 4481–4487 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zucman, J. et al. EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts. Nature Genet. 4, 341–345 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Sorensen, P.H.B. et al. A second Ewing's sarcoma translocation, t(21;22), fuses the EWSgene to another ETS-family transcription factor, ERG. Nature Genet. 6, 146–151 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Englert, C. et al. WT1 suppresses synthesis of the epidermal growth factor receptor and induces apoptosis. EMBO J. 14, 4662–4675 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zinszner, H., Immanuel, D., Liang, F.-X. & Ron, D.A. topogenic role for the oncogenic N-terminus of TLS: nucleolar localization when transcription is inhibited. Oncogene 14, 451–461 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Larsson, S.H. et al. Subnuclear localization of WT1 in splicing or transcription factor domains is regulated by alternative splicing. Cell 81, 391–401 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Englert, C. et al. Truncated WT1 mutants alter the subnuclear localization of the wild-type protein. Proc. Natl. Acad. Sci. USA 92, 11960–11964 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. May, W.A. et al. The Ewing's sarcoma EWS/Fli-1 fusion gene encodes a more potent transcriptional activator and is a more powerful transforming gene than Fli-1. Mol. Cell. Biol. 13, 7393–7398 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Haber, D.A. et al. WT7-mediated growth suppression of Wilms tumor cells expressing a WT1 splicing variant. Science 262, 2057–2059 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Werner, H. et al. Increased expression of the insulin-like growth factor I receptor gene IGF1R in Wilms tumor is correlated with modulation of IGF1R promoter activity by the WT1 Wilms tumor gene product. Proc. Natl. Acad. Sci. USA 90, 5828–5832 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Werner, H. et al. Transcriptional repression of the insulin-like growth factor I receptor (IGF-I-R) gene by the tumor suppressor WT1 involves binding to sequences both upstream and downstream of the IGF-I-R gene transcription start site. J. Biol. Chem. 269, 12577–12582 (1994).

    CAS  PubMed  Google Scholar 

  20. Takimoto, Y., Wang, Z.Y., Kobler, K. & Deuel, T.F. Promoter region of the human platelet-derived growth factor A-chain gene. Proc. Natl. Acad. Sci. USA 88, 1686–1690 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rorsman, R., Leveen, P. & Betsholtz, C. Platelet-derived growth factor (PDGF) A-chain mRNA heterogeneity generated by the use of alternative promoters and alternative polyadenylation sites. Growth Factors 7, 241–251 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, Z., Qiu, Q., Enger, K. & Deuel, T. A second transcriptionally active DNA-binding site for the Wilms tumor gene product, WT1. Proc. Natl. Acad. Sci. USA 90, 8896–8900 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reddy, J., Hosono, S. & Licht, J. The transcriptional effect of WT1 is modulated by choice of expression vector. J. Biol. Chem. 270, 29976–29982 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Heldin, C.-H. Structural and functional studies on platelet-derived growth factor. EMBO J. 11, 4251–4259 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Seppa, H.E., Grotendorst, G.R., Seppa, S.I., Schiffman, E. & Martin, G.R. Platelet-derived growth factor is chemotactic for fibroblasts. J. Cell Biol. 92, 584–588 (1982).

    Article  CAS  PubMed  Google Scholar 

  26. Vignaud, J.M. et al. The role of platelet-derived growth factor production by tumor-associated macrophages in tumor stroma formation in lung cancer. Cancer Res. 54, 5455–5463 (1994).

    CAS  PubMed  Google Scholar 

  27. Anan, K. et al. Vascular endothelial growth factor and platelet-derived growth factor are potential angiogenic and metastatic factors in human breast cancer. Surgery 119, 333–339 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Eming, S.A. et al. Genetically modified human epidermis overexpressing PDGF-A directs the development of a cellular and vascular connective tissue stroma when transplanted to athymic mice—implications for the use of genetically modified keratinocytes to modulate dermal regeneration. J. Invest. Dermatol. 105, 756–763 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Cleary, M.L. Oncogenic conversion of transcription factors by chromosomal translocations. Cell 66, 619–622 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Rabbitts, T.H. Chromosomal translocations in human cancer. Nature 372, 143–149 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Braun, B.S., Frieden, R., Lessnick, S.L., May, W.A. & Denny, C.T. Identification of target genes for the Ewing's sarcoma EWS/Fli fusion protein by representational difference analysis. Mol. Cell. Biol. 15, 4623–4630 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Haber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Kolquist, K., Nichols, K. et al. The EWS-WT1 translocation product induces PDGFA in desmoplastic small round-cell tumour. Nat Genet 17, 309–313 (1997). https://doi.org/10.1038/ng1197-309

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1197-309

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing