Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Developmental expression pattern screen for genes predicted in the C. elegans genome sequencing project

Abstract

Maximum use should be made of information generated in the genome sequencing projects. Toward this end, we have initiated a genome sequence–based, expression pattern screen of genes predicted from the Caenorhabditis elegans genome sequence data. We examined β–galactosidase expression patterns in C. elegans lines transformed with lacZ reporter gene fusions constructed using predicted C. elegans gene promoter regions. Of the predicted genes in the cosmids analysed so far, 67% are amenable to the approach and 54% of examined genes yielded a developmental expression pattern. Expression pattern information is being made generally available using computer databases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sulston, J. et al. The C. elegans genome sequencing project: a beginning. Nature 356, 37–41 (1992).

    Article  PubMed  Google Scholar 

  2. Wilson, R. et al. 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature 368, 32–38 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Coulson, A., Sulston, J., Brenner, S. & Kam, J. Towards a physical map of the genome of the nematode Caenorhabditis elegans. Proc. natn. Acad. Sci. U.S.A. 83, 7821–7825 (1986).

    Article  CAS  Google Scholar 

  4. Coulson, A., Waterston, R., Kiff, J., Sulston, J. & Kohara, Y. Genome linking with yeast artificial chromosomes. Nature 335, 184–186 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Kenyon, C. The nematode C. elegans. Science 240, 1448–1452 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Wood, W.B. & Edgar, L.G. Patterning in the C. elegans embryo. Trend. Genet. 10, 49–54 (1994).

    Article  CAS  Google Scholar 

  7. Hill, D.P. & Wurst, W. Gene and enhancer trapping: mutagenic strategies for developmental studies. Curr. Top. dev. Biol. 28, 181–205 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Fields, C. Information content of Caenorhabditis elegans splice site sequences varies with irrtron length. Nucl. Acids Res. 18, 1509–1512 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fire, A., Harrison, S.W. & Dixon, D. A modular set of lacZ fusion vectors for studying gene expression in Caenorhabditis elegans. Gene 93, 189–98 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. White, J.G., Southgate, E., Thomson, J.N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. Roy. Soc. London. 314, 1–340 (1986).

    Article  CAS  Google Scholar 

  11. Sulston, J.E. & Horvitz, H.R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 56, 110–156 (1977).

    Article  CAS  PubMed  Google Scholar 

  12. Hope, I.A. Promoter trapping in Caenorhabditis elegans. Development 113, 399–408 (1991).

    CAS  PubMed  Google Scholar 

  13. Young, J.M. and Hope, I.A. Molecular markers of differentiation in Caenorhabditis elegans obtained by promoter trapping. Devl. Dynam. 196, 124–132 (1993).

    Article  CAS  Google Scholar 

  14. Bork, P., Ouzounis, C. & Sander, C. From genome sequences to protein function. Curr. Opin. struct. Biol. 4, 393–403 (1994).

    Article  Google Scholar 

  15. Zwaal, R.R., Broeks, A., van Meurs, J., Groenin, J.T.M. & Plasterk, R.H.A. Target-selected gene inactivation in Caenorhabditis elegans by using a frozen transposon insertion mutant bank. Proc. natn. Acad. Sci. U.S.A 90, 7431–7435 (1993).

    Article  CAS  Google Scholar 

  16. Orr, S.L. et al. Isolation of unknown genes from human bone-marrow by differential screening and single pass cDNA sequence determination. Proc. natn. Acad. Sci. U.S.A 91, 11869–11873 (1994).

    Article  CAS  Google Scholar 

  17. Matsubara, K. & Okubo, K. cDNA analyses in the human genome project. Gene 135, 265–274 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Okkema, P.G., Harrison, S.W., Plunger, V., Aryans, A. & Fire, A. Sequence requirements for myosin gene expression and regulation in Caenorhabditis elegans. Genetics 135, 385–404 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Krause, M., Harrison, S.W., Xu, S.-Q., Chen, L. & Fire, A. Elements regulating cell- and stage-specific expression of the C. elegans MyoD family homolog hlh-1. Devl. Biol. 166, 133–148 (1994).

    Article  CAS  Google Scholar 

  20. Evans, T.C., Crittenden, S.L., Kodoyianni, V. & Kimble, J. Translational control of maternal glp-1 mRNA establishes an asymmetry in the C. elegans embryo. Cell 77, 183–194 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Ahringer, J. & Kimble, J. Control of the sperm-oocyte switch in Caenorhabditis elegans hermaphrodites by the fem-3 3′ untranslated region. Nature 349, 346–348 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Land, M., Islas-Trejo, A., Freedman, J.H. & Rubin, C.S. Structure and expression of a novel, neuronal protein kinase C (PKC1B) from Caenorhabditis elegans. J. biol. Chem. 269, 9234–9244 (1994).

    CAS  PubMed  Google Scholar 

  23. Krause, M., Fire, A., Harrison, S.W., Priess, J. & Weintraub, H. CeMyoD accumulation defines the body wall muscle cell fate during C. elegans embryogenesis. Cell 63, 907–919 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Hamelin, M., Scott, I.M., Way, J.C. & Culotti, J.G. The mec-7 β-tubulin gene of Caenorhabditis elegans is expressed in the touch receptor neurons. EMBO J. 11, 2885–2893 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hill, R.J. & Sternberg, R.W. The gene lin-3 encodes an inductive signal for vulval development in C. elegans. Nature 358, 470–476 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Cowing, D.W. & Kenyon, C. Expression of the homeotic gene mab-5 during Caenorhabditis elegans embryogenesis. Development 116, 481–490 (1992).

    CAS  PubMed  Google Scholar 

  27. Mitani, S., Du, H., Hall, D.H., Driscoll, M. & Chalfie, M. Combinatorial control of touch receptor neuron expression in Caenorhabditis elegans. Development 119, 773–783 (1993).

    CAS  PubMed  Google Scholar 

  28. Lincke, C.R., Broeks, A., The, I., Plasterk, R.H.A. & Borst, R. The expression of two P-glycoprotein (pgp) genes in transgenic Caenorhabditis elegans is confined to intestinal cells. EMBO J. 12, 1615–1620 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Freedman, J.H., Slice, L.W., Dixon, D., Fire, A. & Rubin, C.S. The novel metallothionein genes of Caenorhabditis elegans. J. biol. Chem. 268, 2554–2564 (1993).

    CAS  PubMed  Google Scholar 

  30. Sfringham, E.G., Dixon, O.K., Jones, D. & Candido, E.R.M. Temporal and Spatial Expression Patterns of the Small Heat Shock (hsp76) genes in transgenic Caenorhabditis elegans. Molec. Biol. Cell 3, 221–233 (1992).

    Article  Google Scholar 

  31. Way, J.C., Wang, L., Run, J-Q. & Wang, A. The mec-3 gene contains cis-acting elements mediating positive and negative regulation in cells produced by asymmetric cell division in C. elegans. Genes Dev. 5, 2199–2211 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. MacMorris, M. et al. Regulation of vitellogenin gene expression in transgenic Caenorhabditis elegans: short sequences required for activation of the vit-2 promoter. Molec. cell. Biol. 12, 1652–1662 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Spieth, J., Brooke, G., Kuersten, S., Lea, K. & Blumenthal, T. Operons in C. elegans: Polycistronic mRNA precursors are processed by transsplicing of SL2 to downstream coding regions. Cell 73, 521–532 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Zorio, D.A.R., Cheng, N.N., Blumenthal, T. & Spieth, J. Operons as a common form of chromosomal organization in C. elegans. Nature 372, 270–272 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Sulston, J., Dew, M. & Brenner, S. Dopaminergic neurons in the nematode Caenorhabditis elegans. J. comp. Neur. 163, 215–226 (1975).

    Article  CAS  PubMed  Google Scholar 

  36. White, J.G. The anatomy, in The nematode, Caenorhabditis elegans. (ed. Wood, W.B.) 81–122. (Cold Spring Harbor, New York, 1988).

    Google Scholar 

  37. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–54 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Fire, A. Integrative transformation of Caenorhabditis elegans. EMBO J. 5, 2673–2680 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Melta, C.C., Kramer, J.M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991).

    Article  Google Scholar 

  40. Albertson, D.G. & Thomson, J.N. The pharynx of Caenorhabditis elegans. Phil. Trans. R. Soc. London 275, 299–325 (1976).

    Article  CAS  Google Scholar 

  41. Nelson, F.K., Albert, R.S. & Riddle, D.L. Fine structure of the Caenorhabditis elegans secretory-excretory system. J. Ultrastruct. Res. 82, 156–171 (1983).

    Article  CAS  PubMed  Google Scholar 

  42. Sulston, J.E., Schierenberg, E., White, J.G. & Thomson, J.N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Devl. Biol. 100, 64–119 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lynch, A., Briggs, D. & Hope, I. Developmental expression pattern screen for genes predicted in the C. elegans genome sequencing project. Nat Genet 11, 309–313 (1995). https://doi.org/10.1038/ng1195-309

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1195-309

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing