Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A mutation in CFTR produces different phenotypes depending on chromosomal background

Abstract

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene but the association between mutation (genotype) and disease presentation (phenotype) is not straightforward. We have been investigating whether variants in the CFTR gene that alter splicing efficiency of exon 9 can affect the phenotype produced by a mutation. A missense mutation, R117H, which has been observed in three phenotypes, was found to occur on two chromosome backgrounds with intron 8 variants that have profoundly different effects upon splicing efficiency. A close association is shown between chromosome background of the R117H mutation and phenotype. These findings demonstrate that the genetic context in which a mutation occurs can play a significant role in determining the type of illness produced.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Boat, T.F., Welsh, M.J. & Beaudet, A.L. Cystic Fibrosis. In The Metabolic Basis of Inherited Disease (eds Scriver, C.L. et al.) 2649–2680 (New York, McGraw-Hill, 1989).

    Google Scholar 

  2. Kerem, E. et al. The relation between genotype and phenotype in cystic fibrosis-analysis of the most common mutation (ΔF508). New Eng. J. Med. 323, 1517–1522 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Hamosh, A. et al. Cystic fibrosis patients bearing the common missense mutation Gly→Asp at codon 551 and the ΔF508 are indistinguishable from ΔF508 homozygotes except for decreased risk of meconium ileus. Am. J. hum. Genet. 51, 245–250 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kristidis, P. et al. Genetic determination of exocrine pancreatic function in cystic fibrosis. Am. J. hum. Genet. 50, 1178–1184 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hamosh, A. Preliminary results of the cystic fibrosis genotype-phenotype consortium study. Ped. Pulm. 8, 144–145 (1992).

    Google Scholar 

  6. Osborne, L. et al. Incidence and expression of the N1303K mutation of the cystic fibrosis (CFTR) gene. Hum. Genet. 89, 653–658 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Hamosh, A. & Cutting, G.R. Genotype/phenotype relationships in cystic fibrosis. In Current topics in cystic fibrosis, (eds Dodge, J.A. et al.) 69–89 (Chichester, Wiley, 1993).

    Google Scholar 

  8. Dork, T. et al. Cystic fibrosis with three mutations in the cystic fibrosis transmembrane conductance regulator gene. Hum. Genet. 87, 441–446 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Kalin, N., Dork, T. & Tummler, B. A cystic fibrosis allele encoding missense mutations in both nucieotide binding folds of the cystic fibrosis transmembrane conductance regulator. Hum. Mut. 1, 204–210 (1993).

    Article  Google Scholar 

  10. Chu, C.-S. et al. Variable deletion of exon 9 coding sequences in cystic fibrosis transmembrane conductance regulator gene mRNA transcripts in normal bronchial epithelium. EMBO J. 10, 1355–1363 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chu, C.-S. et al. Genetic basis of variable exon 9 skipping in cystic fibrosis transmembrane conductance regulator mRNA. Nature Genet. 3, 151–156 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Strong, T.V. et al. Expression of an abundantly alternatively spliced form of the cystic fibrosis transmembrane conductance regulator (CFTR) gene is not associated with a cAMP-activated chloride conductance. Hum. molec. Genet. 2, 225–230 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Dean, M. et al. Multiple mutations in highly conserved residues are found in mildly affected cystic fibrosis patients. Cell 61, 863–870 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Amos, J.A. et al. Congenital absence of the vas deferens: A primarily genital form of cystic fibrosis. Ped. Pulm. 8, 142–143 (1992).

    Google Scholar 

  15. Lee, R. et al. Identification of previously undiagnosed cystic fibrosis patients: an unexpected outcome of prenatal carrier screening. Am. J. hum. Genet. 51, A32 Abstr. (1992).

    Google Scholar 

  16. Witt, D.R. et al. Cystic fibrosis carrier screening in a prenatal population. Am. J. hum. Genet. 51, A16 abstr. (1992).

    Google Scholar 

  17. Zielenski, J. et al. Identification of mutations in exons 1 through 8 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Genomics 10, 229–235 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Dork, T. et al. Intra and extragenic marker haplotypes of CFTR mutations in cytic fibrosis families. Hum. Genet. 88, 417–425 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Youssoufian, H. et al. Recurrent mutations in haemophilia A give evidence for CpG mutation hotspots. Nature 324, 380–382 (1986).

    Article  CAS  PubMed  Google Scholar 

  20. Reiss, J. et al. Discrimination between recurrent mutation and identity by descent: application to point mutations in exon 11 of the CFTR gene. Hum. Genet. 87, 457–461 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Tsui, L.-C. The spectrum of cystic fibrosis mutations. TIG 8, 392–398 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Carroll, T.P. et al. Transmembrane mutations alter the channels characterisitics of the cystic fibrosis transmembrane conductance regulator expressed in Xenopus oocytes. Cell. Physiol. Biochem. (in the press).

  23. Sheppard, D.N. et al. Mutations in CFTR associated with mild-disease-form Cl channels with altered pore properties. Nature 362, 160–164 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Latham, T., Grabowski, G.A., Theophilus, B.D. & Smith, F.I. Complex alleles of the acid beta-glucosidase gene in Gaucher disease Complex alleles of the acid beta-glucosidase gene in Gaucher disease. Am. J. hum.Genet. 47, 79–86 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Handelin, B.L., Witt, D., Skoletsky, J. & Shuber, A. Unexpected prevalence of R117H and G551D CF mutations in a randomly screened population. Am. J. hum. Genet. 51, A218 Abstr. (1992).

    Google Scholar 

  26. Zielenski, J. et al. Genomic DNA sequence of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Genomics 10, 214–228 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Zeitlin, P.L. et al. A cystic fibrosis bronchial epithelial cell line: Immortalization by Adeno-12-SV40 infection. Am. J. Resp. Cell. molec. Biol. 4, 313–319 (1991).

    Article  CAS  Google Scholar 

  28. Horn, G.T., Richards, B., Merrill, J.J. & Klinger, K.W. Characterization and rapid diagnostic analysis of DNA polymorphisms closely linked to the cystic fibrosis locus. Clin. Chem. 36, 1614–1619 (1990).

    CAS  PubMed  Google Scholar 

  29. Estivill, X. et al. Isolation of a new DNA marker in linkage disequilibrium with cystic fibrosis, situated between J3.11 (D7S8) and IRP. Am. J. hum. Genet. 44, 704–710 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kerem, B. et al. Identification of the cystic fibrosis gene: genetic analysis. Science 245, 1073–1080 (1989).

    Article  CAS  PubMed  Google Scholar 

  31. Chehab, F.F. et al. A dimorphic 4-bp repeat in the cystic fibrosis gene is in absolute linkage disequilibrium with the ΔF508 mutation: implications for prenatal diagnosis and mutation origin. Am. J. hum. Genet. 48, 223–226 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kerem, B. et al. Identification of mutations in regions corresponding to the 2 putative nucleotide (ATP)-binding folds of the cystic fibrosis gene. Proc. natn. Acad. Sci. U.S.A. 87, 8447–8451 (1990).

    Article  CAS  Google Scholar 

  33. Cutting, G.R. et al. A cluster of Cystic Fibrosis mutations in the first nucieotide binding domain of the CFTR protein. Nature 346, 366–369 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Audrezet, M.P. et al. Identification of 12 novel mutations in the CFTR gene. Hum. molec. Genet. 2, 51–54 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiesewetter, S., Macek, M., Davis, C. et al. A mutation in CFTR produces different phenotypes depending on chromosomal background. Nat Genet 5, 274–278 (1993). https://doi.org/10.1038/ng1193-274

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1193-274

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing