Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cloning of the α–adducin gene from the Huntington's disease candidate region of chromosome 4 by exon amplification

Abstract

We have applied the technique of exon amplification to the isolation of genes from the chromosome 4p16.3 Huntington's disease (HD) candidate region. Exons recovered from cosmid Y24 identified cDNA clones corresponding to the α–subunit of adducin, a calmodulin–binding protein that is thought to promote assembly of spectrin–actin complexes in the formation of the membrane cytoskeleton. α–adducin is widely expressed and, at least in brain, is encoded by alternatively spliced mRNAs. The α–adducin gene maps immediately telomeric to D4S95, in a region likely to contain the HD defect, and must be scrutinized to establish whether it is the site of the HD mutation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Martin, J.B. & Gusella, J.F. Huntington's disease: Pathogenesis and management. New Engl. J. Med. 315, 1267–1276 (1986).

    Article  CAS  Google Scholar 

  2. Gusella, J.F. Huntington's disease. Adv. hum. Genet. 20, 125–151 (1991).

    Article  CAS  Google Scholar 

  3. Gusella, J.F. et al. A polymorphic DNA marker genetically linked to Huntington's Disease. Nature 306, 234–238 (1983).

    Article  CAS  Google Scholar 

  4. MacDonald, M.E. et al. Recombination events suggest possible locations for the Huntington's disease gene. Neuron 3, 183–190 (1989).

    Article  CAS  Google Scholar 

  5. Bates, G.P. et al. Defined physical limits of the Huntington disease gene candidate region. Am. J. hum. Genet 49, 7–16 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Snell, R.G. et al. A recombination event that redefines the Huntington disease region. Am. J. hum. Genet. 51, 357–362 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Snell, R.G. et al. Linkage disequilibrium in Huntington's disease: An improved localization for the gene. J. med. Genet 26, 673–675 (1989).

    Article  CAS  Google Scholar 

  8. Theilmann, J. et al. Non-random association between alleles detected at D4S95 and D4S98 and the Huntington's disease gene. J. med. Genet. 26, 676–681 (1989).

    Article  CAS  Google Scholar 

  9. MacDonald, M.E. et al. Complex patterns of linkage disequilibrium in the Huntington disease region. Am. J. hum. Genet. 49, 723–734 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. MacDonald, M.E. et al. The Huntington's disease candidate region exhibits many different haplotypes. Nature Genet 1, 99–103 (1992).

    Article  CAS  Google Scholar 

  11. Buckler, A.J. et al. Exon amplification: A strategy to isolate mammalian genes based on RNA splicing. Proc. natn. Acad. Sci. U.S.A. 88, 4005–4009 (1991).

    Article  CAS  Google Scholar 

  12. Joshi, R., Gilligan, D.M., Otto, E., McLaughlin, T. & Bennett, V. Primary structure and domain organization of human alpha and beta adducin. J. Cell Biol. 115, 665–675 (1991).

    Article  CAS  Google Scholar 

  13. Lin, C.S. et al. New DNA markers in the Huntington's disease gene candidate region. Somat. Cell molec. Genet. 17, 481–488 (1991).

    Article  CAS  Google Scholar 

  14. Bates, G.P. et al. Characterization of a yeast artificial chromosome contig spanning the Huntington's disease gene candidate region. Nature Genet. 1, 180–187 (1992).

    Article  CAS  Google Scholar 

  15. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. molec. Biol. 217, 403–410 (1990).

    Article  Google Scholar 

  16. Graff, J.M., Stumpo, D.J. & Blackshear, P.J. Characterization of the phosphorylation sites in the chicken and bovine myristoylated alanine-rich C kinase substrate protein, a prominent cellular substrate for protein kinase C. J. biol. Chem. 264, 11912–11919 (1989).

    CAS  PubMed  Google Scholar 

  17. Gardner, K. & Bennett, V. A new erythrocyte membrane-associated protein with calmodulin binding activity. Identification and purification. J. biol. Chem. 261, 1339–1348 (1986).

    CAS  PubMed  Google Scholar 

  18. Gardner, K. & Bennett, V. Modulation of spectrin-actin assembly by erythrocyte adducin. Nature 328, 359–362 (1987).

    Article  CAS  Google Scholar 

  19. Mische, S., Mooseker, M. & Morrow, J. Erythrocyte adducin: a calmodulin-regulated actin-bundling protein that stimulates spectrin-actin binding. J. cell Biol. 105, 2387–2849 (1987).

    Article  Google Scholar 

  20. Palfrey, H.C. & Waseem, A. Protein kinase C in the human erythrocyte. Translocation to the plasma membrane and phosphorylation of bands 4.1 and 4.9 and other membrane proteins. J. biol. Chem. 260, 16021–16029 (1985).

    CAS  PubMed  Google Scholar 

  21. Cohen, C.M. & Foley, S.F. Phorbol ester- and Ca2+-dependent phosphorylation of human red cell membrane skeletal proteins. J. biol. Chem. 261, 7701–7709 (1986).

    CAS  PubMed  Google Scholar 

  22. Ling, E., Gardner, K. & Bennett, V. Protein kinase C phosphorylates a recently identified membrane skeleton-associated calmodulin-binding protein in human erythrocytes. J. biol. Chem. 261, 13875–13878 (1986).

    CAS  PubMed  Google Scholar 

  23. Waseem, A. & Palfrey, H.C. Erythrocyte adducin. Comparison of the alpha-and beta-subunits and multiple-site phosphorylation by protein kinase C and cAMP-dependent protein kinase. Eur. J. Biochem. 178, 563–573 (1988).

    Article  CAS  Google Scholar 

  24. Joshi, R. & Bennett, V. Mapping the domain structure of human erythrocyte adducin. J. biol. Chem. 265, 13130–13136 (1990).

    CAS  PubMed  Google Scholar 

  25. Kaiser, H.W., O'Keefe, E. & Bennett, V., Adducin:Ca++-dependent association with sites of cell-cell contact. J. cell Biol. 109, 557–569 (1989).

    Article  CAS  Google Scholar 

  26. Waseem, A. & Palfrey, H.C. Identification and protein kinase C-dependent phosphorylation of alpha-adducin in human fibroblasts. J. cell Sci. 96, 93–98 (1990).

    CAS  PubMed  Google Scholar 

  27. Bennett, V., Gardner, K. & Steiner, J. Brain adducin: a protein kinase C substrate that may mediate site-directed assembly at the spectrin-actin junction. J. biol. Chem. 263, 5860–5869 (1988).

    CAS  PubMed  Google Scholar 

  28. Salardi, S. et al. Erythrocyte adducin differential properties in the normotensive and hypertensive rats of the Milan Strain. Characteization of spleen adducin mRNA. Am. J. Hypertens. 2, 229–237 (1989).

    Article  CAS  Google Scholar 

  29. Peters, L.L. et al. Purkinje cell degeneration associated with erythroid ankyrin deficiency in nb/nb mice. J. Cell Biol. 114, 1233–1241 (1991).

    Article  CAS  Google Scholar 

  30. Nehls, V., Drenckhahn, D., Joshi, R. & Bennett, V. Adducin in erythrocyte precursor cells of rats and humans: expression and compartmentalization. Blood 78, 1692–1696 (1991).

    CAS  PubMed  Google Scholar 

  31. Sanger, T., Nicklen, S. and Coulson, A.R. DNA sequencing with chain-termination inhibitors. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  CAS  Google Scholar 

  32. Feinberg, A.P. & Vogelstein, B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity: Addendum. Anal. Biochem. 137, 266–267 (1984).

    Article  CAS  Google Scholar 

  33. Smith, B. et al. Isolation of DNA markers in the direction of the Huntington disease gene from the G8 locus. Am. J. hum. Genet 42, 335–344 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wexler, N.S. et al. Homozygotes for Huntington's disease. Nature 326, 194–197 (1987).

    Article  CAS  Google Scholar 

  35. Maniatis, T., Fritsch, E.F. & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, S., Snell, R., Buckler, A. et al. Cloning of the α–adducin gene from the Huntington's disease candidate region of chromosome 4 by exon amplification. Nat Genet 2, 223–227 (1992). https://doi.org/10.1038/ng1192-223

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1192-223

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing