Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spatial proximity of translocation-prone gene loci in human lymphomas

Abstract

Cancer cells frequently have disease-specific chromosome rearrangements1,2,3,4. It is poorly understood why translocations between chromosomes recur at specific breakpoints in the genome. Here we provide evidence that higher-order spatial genome organization is a contributing factor in the formation of recurrent translocations. We show that MYC, BCL and immunoglobulin loci, which are recurrently translocated in various B-cell lymphomas, are preferentially positioned in close spatial proximity relative to each other in normal B cells. Loci in spatial proximity are non-randomly positioned towards the nuclear interior in normal B cells. This locus proximity is the consequence of higher-order genome structure rather than a property of individual genes. Our results suggest that the formation of specific translocations in human lymphomas, and perhaps other tissues, is determined in part by higher-order spatial organization of the genome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Non-random radial positioning of gene loci.
Figure 2: Spatial proximity of translocation-prone oncogene loci.
Figure 3: Close locus pairs are distributed non-randomly.
Figure 4: Relational topology of gene loci is determined by higher-order genome organization.

Similar content being viewed by others

References

  1. Rowley, J.D. The critical role of chromosome translocations in human leukemias. Annu. Rev. Genet. 32, 495–519 (1998).

    Article  CAS  Google Scholar 

  2. Knudson, A.G. Two genetic hits (more or less) to cancer. Nat. Rev. Cancer 1, 157–162 (2001).

    Article  CAS  Google Scholar 

  3. Elliott, B. & Jasin, M. Double-strand breaks and translocations in cancer. Cell Mol. Life Sci. 59, 373–385 (2002).

    Article  CAS  Google Scholar 

  4. Mitelman, F. Recurrent chromosome aberrations in cancer. Mutat. Res. 462, 247–253 (2000).

    Article  CAS  Google Scholar 

  5. Boxer, L.M. & Dang, C.V. Translocations involving c-myc and c-myc function. Oncogene 20, 5595–5610 (2001).

    Article  CAS  Google Scholar 

  6. Harris, N.L. et al. New approaches to lymphoma diagnosis. Hematology 2001, 194–220 (2001).

  7. Siebert, R., Rosenwald, A., Staudt, L.M. & Morris, S.W. Molecular features of B-cell lymphoma. Curr. Opin. Oncol. 13, 316–324 (2001).

    Article  CAS  Google Scholar 

  8. Willis, T.G. & Dyer, M.J.S. The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood 96, 808–822 (2000).

    CAS  PubMed  Google Scholar 

  9. Bartova, E. et al. The influence of the cell cycle, differentiation and irradiation on the nuclear location of the abl, bcr and c-myc genes in human leukemic cells. Leuk. Res. 24, 233–241 (2000).

    Article  CAS  Google Scholar 

  10. Bartova, E. et al. Nuclear topography of the c-myc gene in human leukemic cells. Gene 244, 1–11 (2000).

    Article  CAS  Google Scholar 

  11. Kozubek, S. et al. 3D Structure of the human genome: order in randomness. Chromosoma 111, 321–331 (2002).

    Article  CAS  Google Scholar 

  12. Neves, H., Ramos, C., da Silva, M.G., Parreira, A. & Parreira, L. The nuclear topography of ABL, BCR, PML, and RARα genes: evidence for gene proximity in specific phases of the cell cycle and stages of hematopoietic differentiation. Blood 93, 1197–1207 (1999).

    CAS  PubMed  Google Scholar 

  13. Parreira, L. et al. The spatial distribution of human immunoglobulin genes within the nucleus: evidence for gene topography independent of cell type and transcriptional activity. Hum. Genet. 100, 588–594 (1997).

    Article  CAS  Google Scholar 

  14. Lukasova, E. et al. Localisation and distance between ABL and BCR genes in interphase nuclei of bone marrow cells of control donors and patients with chronic myeloid leukaemia. Hum. Genet. 100, 525–535 (1997).

    Article  CAS  Google Scholar 

  15. Sachs, R.K., Chen, A.M. & Brenner, D.J. Proximity effects in the production of chromosome aberrations by ionizing radiation. Int. J. Rad. Biol. 71, 1–19 (1997).

    Article  CAS  Google Scholar 

  16. Parada, L., McQueen, P., Munson, P. & Misteli, T. Conservation of relative chromosome positioning in normal and cancer cells. Curr. Biol. 12, 1692–1697 (2002).

    Article  CAS  Google Scholar 

  17. Parada, L. & Misteli, T. Chromosome positioning in the interphase nucleus. Trends Cell Biol. 12, 425–432 (2002).

    Article  CAS  Google Scholar 

  18. Chubb, J.R., Boyle, S., Perry, P. & Bickmore, W.A. Chromatin motion is constrained by association with nuclear compartments in human cells. Curr. Biol. 12, 439–445 (2002).

    Article  CAS  Google Scholar 

  19. Vazquez, J., Belmont, A.S. & Sedat, J.W. Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus. Curr. Biol. 11, 1227–1239 (2001).

    Article  CAS  Google Scholar 

  20. Nikiforova, M.N. et al. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290, 138–141 (2000).

    Article  CAS  Google Scholar 

  21. Haigis, K.M. & Dove, W.F. A Robertsonian translocation suppresses a somatic recombination pathway to loss of heterozygosity. Nat. Genet. 33, 33–39 (2003).

    Article  CAS  Google Scholar 

  22. Kosak, S.T. et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296, 158–162 (2002).

    Article  CAS  Google Scholar 

  23. Zhou, J., Ermakova, O.V., Riblet, R., Birshtein, B.K. & Schildkraut, C.L. Replication and subnuclear location dynamics of the immunoglobulin heavy-chain locus in B-lineage cells. Mol. Cell. Biol. 22, 4876–4889 (2002).

    Article  CAS  Google Scholar 

  24. Stamatopoulos, K. et al. Molecular insights into the immunopathogenesis of follicular lymphoma. Immunol. Today 21, 298–305 (2000).

    Article  CAS  Google Scholar 

  25. Skok, J.A. et al. Nonequivalent nuclear location of immunoglobulin alleles in B lymphocytes. Nat. Immunol. 2, 848–54 (2001).

    Article  CAS  Google Scholar 

  26. Yoshida, S. et al. Identification of heterologous translocation partner genes fused to the BCL6 gene in diffuse large B-cell lymphomas: 5′-RACE and LA–PCR analyses of biopsy samples. Oncogene 18, 7994–7999 (1999).

    Article  CAS  Google Scholar 

  27. Chapter 14. Statistical description of data.in Numerical Recipes in C (eds. Press, W.H., Teuolskky, S.A., Vettering, W.T. and Flannery, B.P.) 609–655 (Cambridge University Press, Cambridge, 1992).

  28. Stevens, M.A. Kolmogorov-Smernov Statistics. in Encyclopedia of Statistical Science vol. 4 (eds. Kotz, S. and Johnson, N.L.) 393–396 (Wiley and Sons, New York, 1982).

    Google Scholar 

  29. Fienberg, S.E. Contingency Tables. in Encyclopedia of Statistical Science vol. 2 (eds. Kotz, S. and Johnson, N.L.) 161–171 (Wiley and Sons, New York, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Misteli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roix, J., McQueen, P., Munson, P. et al. Spatial proximity of translocation-prone gene loci in human lymphomas. Nat Genet 34, 287–291 (2003). https://doi.org/10.1038/ng1177

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1177

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing