Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease

Abstract

Nearly all human genetic disorders result from a limited repertoire of mutations in an associated gene or its regulatory elements. We recently described an individual with an inherited form of anemia (α-thalassemia) who has a deletion that results in a truncated, widely expressed gene (LUC7L) becoming juxtaposed to a structurally normal α-globin gene (HBA2). Although it retains all of its local and remote cis-regulatory elements, expression of HBA2 is silenced and its CpG island becomes completely methylated early during development. Here we show that in the affected individual, in a transgenic model and in differentiating embryonic stem cells, transcription of antisense RNA mediates silencing and methylation of the associated CpG island. These findings identify a new mechanism underlying human genetic disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The 16p telomeric region from a normal chromosome (16p13.3) and from the ZF-deleted chromosome (α−ZF 16p13.3).
Figure 2: Primers and constructs used to study the ZF methylation and silencing phenomenon.
Figure 3: Detection of antisense transcripts in ZF cell lines.
Figure 4: Transgenic mice expressing high levels of α-globin antisense RNA silence the α-globin gene.
Figure 5: The HBA2 CpG island is methylated in ZFαAS mice.
Figure 6: The ZF methylation phenomenon can be recapitulated in an ES cell system.
Figure 7: Correlation between methylation and expression of antisense transcripts.

Similar content being viewed by others

References

  1. Cooper, D.N. & Krawczak, M. Human Gene Mutation (BIOS Scientific, Oxford, 1993).

    Google Scholar 

  2. Bedell, M.A., Jenkins, N.A. & Copeland, N.G. Good genes in bad neighbourhoods. Nat. Genet. 12, 229–232 (1996).

    Article  CAS  Google Scholar 

  3. Kleinjan, D.-J. & van Heyningen, V. Position effect in human genetic disease. Hum. Mol. Genet. 7, 1611–1618 (1998).

    Article  CAS  Google Scholar 

  4. Steinberg, M.H., Forget, B.G., Higgs, D.R. & Nagel, R.L. Disorders of Hemoglobin (Cambridge University Press, Cambridge, 2001).

    Google Scholar 

  5. Barbour, V.M. et al. α-thalassemia resulting from a negative chromosomal position effect. Blood 96, 800–807 (2000).

    CAS  PubMed  Google Scholar 

  6. Flint, J. et al. The relationship between chromosome structure and function at a human telomeric region. Nat. Genet. 15, 252–257 (1997).

    Article  CAS  Google Scholar 

  7. Bird, A.P., Taggart, M.H., Nicholls, R.D. & Higgs, D.R. Non-methylated CpG-rich islands at the human α-globin locus: implications for evolution of the α-globin pseudogene. EMBO J. 6, 999–1004 (1987).

    Article  CAS  Google Scholar 

  8. Smith, Z.E. & Higgs, D.R. The pattern of replication at a human telomeric region (16p13.3): its relationship to chromosome structure and gene expression. Hum. Mol. Genet. 8, 1373–1386 (1999).

    Article  CAS  Google Scholar 

  9. Brown, K.E. et al. Expression of α- and β-globin genes occurs within different nuclear domains in haemopoietic cells. Nat. Cell Biol. 3, 602–606 (2001).

    Article  CAS  Google Scholar 

  10. Tufarelli, C., Frischauf, A.-M., Hardison, R., Flint, J. & Higgs, D.R. Characterisation of a widely expressed gene (LUC7-LIKE) defining the centromeric boundary of the human α-globin domain. Genomics 71, 307–314 (2001).

    Article  CAS  Google Scholar 

  11. Wutz, A. et al. Imprinted expression of the lgf2r gene depends on an intronic CpG island. Nature 389, 745–749 (1997).

    Article  CAS  Google Scholar 

  12. Smilinich, N.J. et al. A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith–Wiedemann syndrome. Proc. Natl. Acad. Sci. USA 96, 8064–8069 (1999).

    Article  CAS  Google Scholar 

  13. Rougeulle, C., Cardoso, C., Fontes, M., Colleaux, L. & Lalande, M. An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript. Nat. Genet. 19, 15–16 (1998).

    Article  CAS  Google Scholar 

  14. Hayward, B.E. & Bonthron, D.T. An imprinted antisense transcript at the human GNAS1 locus. Hum. Mol. Genet. 9, 835–841 (2000).

    Article  CAS  Google Scholar 

  15. Wroe, S.F. et al. An imprinted transcript, antisense to Nesp, adds complexity to the cluster of imprinted genes at the mouse Gnas locus. Proc. Natl. Acad. Sci. USA 97, 3342–3346 (2000).

    Article  CAS  Google Scholar 

  16. Lee, J.T. & Lu, N. Targeted mutagenesis of Tsix leads to nonrandom X inactivation. Cell 99, 47–57 (1999).

    Article  CAS  Google Scholar 

  17. Higgs, D.R. et al. A major positive regulatory region located far upstream of the human α-globin gene locus. Genes Dev. 4, 1588–1601 (1990).

    Article  CAS  Google Scholar 

  18. Sharpe, J.A. et al. Analysis of the human α-globin gene cluster in transgenic mice. Proc. Natl. Acad. Sci. USA 90, 11262–11266 (1993).

    Article  CAS  Google Scholar 

  19. Higgs, D.R., Sharpe, J.A. & Wood, W.G. Understanding α-globin gene expression: a step towards effective gene therapy. Semin. Hematol. 35, 93–104 (1998).

    CAS  PubMed  Google Scholar 

  20. Matzke, M., Matzke, A.J.M. & Kooter, J.M. RNA: guiding gene silencing. Science 293, 1080–1083 (2001).

    Article  CAS  Google Scholar 

  21. Epstein, C.J., Smith, S., Travis, B. & Tucker, G. Both X chromosomes function before visible X-chromosome inactivation in female mouse embryos. Nature 274, 500–503 (1978).

    Article  CAS  Google Scholar 

  22. Monk, M. & Harper, M.I. Sequential X chromosome inactivation coupled with cellular differentiation in early mouse embryos. Nature 281, 311–313 (1979).

    Article  CAS  Google Scholar 

  23. Martin, G.R. et al. X-chromosome inactivation during differentiation of female teratocarcinoma stem cells in vitro. Nature 271, 829–333 (1978).

    Google Scholar 

  24. Panning, B., Dausman, J. & Jaenisch, R. X-chromosome inactivation is mediated by Xist RNA stabilization. Cell 90, 907–916 (1997).

    Article  CAS  Google Scholar 

  25. Sheardown, S.A. et al. Stabilization of Xist RNA mediates initiation of X-chromosome inactivation. Cell 91, 99–107 (1997).

    Article  CAS  Google Scholar 

  26. Hooper, M., Hardy, K., Handyside, A., Hunter, S. & Monk, M. HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326, 292–295 (1987).

    Article  CAS  Google Scholar 

  27. Daniels, R., Lowell, S., Bolton, V. & Monk, M. Transcription of tissue-specific genes in human preimplantation embryos. Hum. Reprod. 12, 2251–2256 (1997).

    Article  CAS  Google Scholar 

  28. Schorpp, M. et al. The human ubiquitin C promoter directs high ubiquitous expression of transgenes in mice. Nucleic Acids Res. 24, 1787–1788 (1996).

    Article  CAS  Google Scholar 

  29. Sleutels, F., Zwart, R. & Barlow, D.P. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 41, 810–813 (2002).

    Article  Google Scholar 

  30. Sleutels, F., Barlow, D.P. & Lyle, R. The uniqueness of the imprinting mechanism. Curr. Opin. Genet. Dev. 10, 229–233 (2000).

    Article  CAS  Google Scholar 

  31. Lee, J.T. & Jaenisch, R. Long-range cis effects of ectopic X-inactivation centres on a mouse autosome. Nature 386, 275–279 (1997).

    Article  CAS  Google Scholar 

  32. Lee, J.T., Davidow, L.S. & Warshawsky, D. Tsix, a gene antisense to Xist at the X-inactivation centre. Nat. Genet. 21, 400–404 (1999).

    Article  CAS  Google Scholar 

  33. Futscher, B.W. et al. Role for DNA methylation in the control of cell type-specific maspin expression. Nat. Genet. 31, 175–179 (2002).

    Article  CAS  Google Scholar 

  34. Ehrlich, M. DNA hypomethylation and cancer. in DNA Alternations in Cancer (ed. Ehrlich, M.) 273–291 (Eaton, Natick, Massachusetts, 2000).

    Google Scholar 

  35. Baylin, S.B. & Herman, J.G. Epigenetics and loss of gene function in cancer. in DNA Alternations in Cancer (ed. Ehrlich, M.) 293–309 (Eaton, Natick, Massachusetts, 2000).

    Google Scholar 

  36. Rombel, I. et al. Transcriptional activation of human adult α-globin genes by hypersensitive site-40 enhancer: function of nuclear factor-binding motifs occupied in erythroid cells. Proc. Natl. Acad. Sci. USA 92, 6454–6458 (1995).

    Article  CAS  Google Scholar 

  37. Mao, X., Fujiwara, Y., Chapdelaine, A., Yang, H. & Orkin, S.H. Activation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strain. Blood 97, 324–326 (2001).

    Article  CAS  Google Scholar 

  38. Spivak, J.L., Toretti, D. & Dickerman, H.W. Effect of phenylhydrazine-induced hemolytic anemia on nuclear RNA polymerase activity of the mouse spleen. Blood 42, 257–266 (1973).

    CAS  PubMed  Google Scholar 

  39. Tybulewicz, V.L., Crawford, C.E., Jackson, P.K., Bronson, R.T. & Mulligan, R.C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65, 1153–1163 (1991).

    Article  CAS  Google Scholar 

  40. Keller, G., Kennedy, M., Papayannopoulou, T. & Wiles, M.V. Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol. Cell. Biol. 13, 473–486 (1993).

    Article  CAS  Google Scholar 

  41. Clark, S.J., Harrison, J., Paul, C.L. & Frommer, M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 11, 2990–2997 (1994).

    Google Scholar 

  42. Kulozik, A.E., Kar, B.C., Serjeant, G.R., Serjeant, B.E. & Weatherall, D.J. The molecular basis of α-thalassemia in India. Its interaction with the sickle cell gene. Blood 71, 467–472 (1988).

    CAS  PubMed  Google Scholar 

  43. Fei, Y.J., Fujita, S. & Huisman, T.H.J. Two different theta (θ)-globin gene deletions observed among black newborn babies. Br. J. Haematol. 68, 249–254 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to L. Rose for preparation of the manuscript, C. Porcher for help setting up the ES cell differentiation assay, E. Li and T. Chen for helpful advice and on-going collaboration and V. Samara and S. Butler for technical assistance. D.G. was supported by the Medical Research Council and the Staines Research Fellowship, Exeter College, Oxford. This work was supported by the Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas R Higgs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tufarelli, C., Stanley, J., Garrick, D. et al. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat Genet 34, 157–165 (2003). https://doi.org/10.1038/ng1157

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1157

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing