Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Unconventional conjugal DNA transfer in mycobacteria

Abstract

Bacterial conjugation is an active process that results in unidirectional transfer of DNA from a donor to a recipient cell. Most transfer systems are plasmid-encoded and require proteins to act at a unique cis-acting site to initiate and complete DNA transfer. By contrast, the Mycobacterium smegmatis DNA transfer system is chromosomally encoded. Here we show that multiple cis-acting sequences present on the chromosome can mediate transfer of a non-mobilizable test plasmid. Moreover, unlike conventional plasmid transfer, recipient recombination functions are required to allow this plasmid, and derivatives of it, to re-circularize through a process similar to gap repair. Extended DNA homology with the recipient chromosome is required to facilitate repair, resulting in acquisition of recipient chromosomal DNA by the plasmid. Together, these results show that DNA transfer in M. smegmatis occurs by a mechanism different from that of prototypical plasmid transfer systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA transfer frequencies of cTra12 subclones.
Figure 2: Transfer of plasmid DNA involves acquisition of DNA from the recipient chromosome by gap repair.
Figure 3: A model to explain the inheritance patterns observed with bom-mediated DNA transfer in M. smegmatis.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Waters, V.L. Conjugation between bacterial and mammalian cells. Nat. Genet. 29, 375–376 (2001).

    Article  CAS  Google Scholar 

  2. Buchanan-Wollaston, V., Passiatore, J.E. & Cannon, F. The mob and oriT mobilization functions of a bacterial plasmid promote its transfer to plants. Nature 328, 172–175 (1987).

    Article  CAS  Google Scholar 

  3. Heinemann, J.A. & Sprague, G.F. Jr. Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature 340, 205–209 (1989).

    Article  CAS  Google Scholar 

  4. Firth, N., Ippen-Ihler, K. & Skurray, R.A. Structure and function of the F factor and mechanism of conjugation. in Escherichia coli and Salmonella Cellular and Molecular Biology Vol. 2 (ed. Neidhardt, F.C.) 2377–2401 (American Society for Microbiology Press, Washington, D.C., 1996).

    Google Scholar 

  5. Zechner, E.L. et al. Conjugative–DNA transfer processes. in The Horizontal gene pool, bacterial plasmids and gene spread (ed. Thomas, C.M.) 87–174 (Harwood Academic Publishers, Amsterdam, 2000).

    Google Scholar 

  6. Lanka, E. & Wilkins, B.M. DNA processing reactions in bacterial conjugation. Annu. Rev. Biochem. 64, 141–169 (1995).

    Article  CAS  Google Scholar 

  7. Mizuguchi, Y. & Tokunaga, T. Recombination between Mycobacterium smegmatis strains Jucho and Lacticola. Jpn. J. Microbiol. 15, 359–366 (1971).

    Article  CAS  Google Scholar 

  8. Parsons, L.M., Jankowski, C.S. & Derbyshire, K.M. Conjugal transfer of chromosomal DNA in Mycobacterium smegmatis. Mol. Micro. 28, 571–582 (1998).

    Article  CAS  Google Scholar 

  9. Derbyshire, K.M. & Bardarov, S. DNA transfer in mycobacteria: conjugation and transduction. in Molecular genetics of mycobacteria (eds. Hatfull, G.F. and Jacobs, W.R.) 93–107 (American Society for Microbiology Press, Washington, D.C., 2000).

    Google Scholar 

  10. Wollman, E.-L., Jacob, F. & Hayes, W. Conjugation and genetic recombination in Escherichia coli K-12. Cold Spring Harb. Symp. Quant. Biol. 21, 141–162 (1956).

    Article  CAS  Google Scholar 

  11. Warren, G.J., Twigg, A.J. & Sherratt, D.J. ColE1 plasmid mobility and relaxation complex. Nature 274, 259–261 (1978).

    Article  CAS  Google Scholar 

  12. Lloyd, R.G. & Low, K.B. Homologous recombination. in Escherichia coli and Salmonella Cellular and Molecular Biology Vol. 2 (ed. Neidhardt, F.C.) 2236–2255 (American Society for Microbiology Press, Washington, D.C., 1996).

    Google Scholar 

  13. Haber, J.E. DNA recombination: the replication connection. Trends Biochem. Sci. 24, 271–275 (1999).

    Article  CAS  Google Scholar 

  14. Smith, G.R. Conjugational recombination in E. coli: myths and mechanisms. Cell 64, 19–27 (1991).

    Article  CAS  Google Scholar 

  15. Canosi, U., Iglesias, A. & Trautner, T.A. Plasmid transformation in Bacillus subtilis: effects of insertion of Bacillus subtilis DNA into plasmid pC194. Mol. Gen. Genet. 181, 434–440 (1981).

    Article  CAS  Google Scholar 

  16. Bhatt, A., Kieser, H.M., Melton, R.E. & Kieser, T. Plasmid transfer from streptomyces to Mycobacterium smegmatis by spontaneous transformation. Mol. Microbiol. 43, 135–146 (2002).

    Article  CAS  Google Scholar 

  17. Hopwood, D.A. & Kieser, T. Conjugative plasmids of streptomyces. in Bacterial Conjugation (ed. Clewell, D.B.) 293–312 (Plenum, New York, 1993).

    Chapter  Google Scholar 

  18. Wu, L.J., Lewis, P.J., Allmansberger, R., Hauser, P.M. & Errington, J. A conjugation-like mechanism for prespore chromosome partitioning during sporulation in Bacillus subtilis. Genes Dev. 9, 1316–1326 (1995).

    Article  CAS  Google Scholar 

  19. Maas, R.M., Gotz, J., Wohlleben, W. & Muth, G. The conjugative plasmid pSG5 from Streptomyces ghanaensis DSM 2932 differs in its transfer functions from other streptomyces rolling-circle-type plasmids. Microbiology 144, 2809–2817 (1998).

    Article  CAS  Google Scholar 

  20. Ducote, M.J., Prakash, S. & Pettis, G.S. Minimal and contributing sequence determinants of the cis-acting locus of transfer (clt) of streptomycete plasmid pIJ101 occur within an intrinsically curved plasmid region. J. Bacteriol. 182, 6834–6841 (2000).

    Article  CAS  Google Scholar 

  21. Pettis, G.S. & Cohen, S.N. Transfer of the plJ101 plasmid in Streptomyces lividans requires a cis-acting function dispensable for chromosomal gene transfer. Mol. Microbiol. 13, 955–964 (1994).

    Article  CAS  Google Scholar 

  22. Papavinasasundaram, K.G., Colston, M.J. & Davis, E.O. Construction and complementation of a recA deletion mutant of Mycobacterium smegmatis reveals that the intein in Mycobacterium tuberculosis recA does not affect RecA function. Mol. Microbiol. 30, 525–534 (1998).

    Article  CAS  Google Scholar 

  23. Jacobs, W.R. Jr. et al. Genetic systems for mycobacteria. Methods Enzymol. 204, 537–555 (1991).

    Article  CAS  Google Scholar 

  24. Donnelly-Wu, M.K., Jacobs, W.R., Jr. & Hatfull, G.F. Superinfection immunity of mycobacteriophage L5: applications for genetic transformation of mycobacteria. Mol. Micro. 7, 407–417 (1993).

    Article  CAS  Google Scholar 

  25. Garbe, T.R. et al. Transformation of mycobacterial species using hygromycin resistance as a selectable marker. Microbiol. 140, 133–138 (1994).

    Article  CAS  Google Scholar 

  26. Griffin, T.J. et al. In vitro transposition of Tn552: a tool for DNA sequencing and mutagenesis. Nucleic Acids Res. 27, 3859–3865 (1999).

    Article  CAS  Google Scholar 

  27. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  28. Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10881–10890 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We dedicate this article to the memories of S. Bardarov and J. Colston, who were friends and a stimulating intellectual force behind this work. We thank J. Colston for the recA disruption plasmids; C. Takacs, J. Flint, T. Ichiyanagi and A. Waring for technical assistance; and M. Belfort, J. Curcio, V. Derbyshire, D. Figurski, D. Nag, H. Taber and N. Tavakoli for critical comments. This work was supported by a grant from the US National Institutes of Health to K.M.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith M. Derbyshire.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Parsons, L. & Derbyshire, K. Unconventional conjugal DNA transfer in mycobacteria. Nat Genet 34, 80–84 (2003). https://doi.org/10.1038/ng1139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1139

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing