Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sublimiting concentration of TFIIH transcription/DNA repair factor causes TTD-A trichothiodystrophy disorder

Abstract

The repair-deficient form of trichothiodystrophy (TTD) most often results from mutations in the genes XPB or XPD, encoding helicases of the transcription/repair factor TFIIH. The genetic defect in a third group, TTD-A, is unknown, but is also caused by dysfunctioning TFIIH. None of the TFIIH subunits carry a mutation and TFIIH from TTD-A cells is active in both transcription and repair. Instead, immunoblot and immunofluorescence analyses reveal a strong reduction in the TFIIH concentration. Thus, the phenotype of TTD-A appears to result from sublimiting amounts of TFIIH, probably due to a mutation in a gene determining the complex stability. The reduction of TFIIH mainly affects its repair function and hardly influences transcription.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Repair, transcription and correction of repair defect in TTD-A fibroblasts.
Figure 2: Transcription and repair activities of TFIIH from fibroblasts.
Figure 3: Reduced concentration of TFIIH subunits in the TTDA whole cell extract.
Figure 4: Reduced concentrations of TFIIH in TTD-A fibroblasts as apparent from immunofluorescence.
Figure 5: IIH/TTD-A restores NER in TTD-A.
Figure 6: Northern-blot analysis.

Similar content being viewed by others

References

  1. Friedberg, E.C., Walker, G.C. & Siede, W. DNA Repair and Mutagenesis (ASM, Washington, DC, 1995).

    Google Scholar 

  2. De Laat, W.L., Jasper, N.G. & Hoeijmakers, J.H. Molecular mechanism of nucleotide excision repair . Genes Dev. 13, 768–785 (1999).

    Article  CAS  Google Scholar 

  3. Araujo, S.J. et al. Nucleotide excision repair of DNA with recombinant human proteins: definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK. Genes Dev. 14, 349– 359 (2000).

    CAS  Google Scholar 

  4. Hanawalt, P.C. The bases for Cockayne syndrome. Nature 405, 415–416 (2000).

    Article  CAS  Google Scholar 

  5. Schaeffer, L. et al. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260, 58– 63 (1993).

    Article  CAS  Google Scholar 

  6. Sung, P., Guzder, S.N., Prakash, L. & Prakash, S. Reconstitution of TFIIH and requirement of its DNA helicase subunits, Rad3 and Rad25, in the incision step of nucleotide excision repair. J. Biol. Chem. 271, 10821–10826 (1996).

    Article  CAS  Google Scholar 

  7. Feaver, W.J. et al. Dual roles of a multiprotein complex from S. cerevisiae in transcription and DNA repair. Cell 75, 1379 –1387 (1993).

    Article  CAS  Google Scholar 

  8. Drapkin, R. et al. Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II. Nature 368, 769– 772 (1994).

    Article  CAS  Google Scholar 

  9. Bootsma, D., Kraemer, K.H., Cleaver, J.E. & Hoeijmakers, J.H.J. Nucleotide Excision Repair Syndromes: Xeroderma Pigmentosum, Cockayne Syndrome, And Trichothiodystrophy 245–274 (Mc Graw-Hill, New York, 1998).

    Google Scholar 

  10. Broughton, B.C. et al. Molecular and cellular analysis of the DNA repair defect in a patient with xeroderma pigmentosum complementation group D with the clinical features of xeroderma pigmentosum and Cockayne syndrome. Am. J. Hum. Genet. 56, 167–174 (1995).

    CAS  Google Scholar 

  11. Taylor, E. et al. Xeroderma pigmentosum and trichothiodystrophy are associated with different mutations in the XPD (ERCC2) repair/transcription gene. Proc. Natl Acad. Sci. USA 94, 8658– 8663 (1997).

    Article  CAS  Google Scholar 

  12. de Boer, J. & Hoeijmakers, J.H. Nucleotide excision repair and human syndromes. Carcinogenesis 21, 453–460 (2000).

    Article  CAS  Google Scholar 

  13. Weeda, G. et al. A mutation in the XPB/ERCC3 DNA repair transcription gene, associated with trichothiodystrophy. Am. J. Hum. Genet. 60, 320–329 (1997).

    CAS  Google Scholar 

  14. Bootsma, D. & Hoeijmakers, J.H.J. DNA repair. Engagement with transcription. Nature 363, 114–115 (1993).

    Article  CAS  Google Scholar 

  15. Lehmann, A.R. Dual functions of DNA repair genes: molecular, cellular, and clinical implications . Bioessays 20, 146–155 (1998).

    Article  CAS  Google Scholar 

  16. de Boer, J. et al. Mouse model for the DNA repair/basal transcription disorder trichothiodystrophy reveals cancer predisposition. Cancer Res. 59, 3489–3494 ( 1999).

    CAS  Google Scholar 

  17. Hwang, B.J., Liao, J.C. & Chu, G. Isolation of a cDNA encoding a UV-damaged DNA binding factor defective in xeroderma pigmentosum group E cells. Mutat. Res. 362, 105–117 ( 1996).

    Article  Google Scholar 

  18. Coin, F. et al. Mutations in the XPD helicase result in XP and TTD phenotypes, preventing the interaction of XPD with the p44 subunit of TFIIH. Nature Genet. 20, 184–188 (1998).

    Article  CAS  Google Scholar 

  19. Coin, F., Bergmann, E., Tremeau-Bravard, A. & Egly, J.M. Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH. EMBO J. 18, 1357–1366 (1999).

    Article  CAS  Google Scholar 

  20. Bradsher, J., Coin, F. & Egly, J.M. Distinct roles for the helicases of TFIIH in transcript initiation and promoter escape. J. Biol. Chem. 275, 2532–2538 (2000).

    Article  CAS  Google Scholar 

  21. Moreland, R.J. et al. A role for the TFIIH XPB DNA helicase in promoter escape by RNA polymerase II. J. Biol. Chem. 274, 22127 –22130 (1999).

    Article  CAS  Google Scholar 

  22. Stefanini, M. et al. A new nucleotide-excision repair gene associated with the disorder trichothiodystrophy. Am. J. Hum. Genet. 53 , 817–821 (1993).

    CAS  Google Scholar 

  23. Vermeulen, W. et al. Three unusual repair deficiencies associated with transcription factor BTF2 (TFIIH). Evidence for the existence of a transcription syndrome . Cold Spring Harb. Symp. Quant. Biol. 59, 317–329 (1994).

    Article  CAS  Google Scholar 

  24. Marinoni, J.C. et al. Cloning and characterization of p52, the fifth subunit of the core of the transcription/DNA repair factor TFIIH. EMBO J. 16, 1093–1102 ( 1997).

    Article  CAS  Google Scholar 

  25. Tirode, F., Busso, D., Coin, F. & Egly, J. Reconstitution of the transcription factor TFIIH: assignment of the functions for the three enzymatic subunits, XPB, XPD and cdk7. Mol. Cell 3, 87–95 (1999).

    Article  CAS  Google Scholar 

  26. Vermeulen, W. et al. Clinical heterogeneity within xeroderma pigmentosum associated with mutations in the DNA repair and transcription gene ERCC3. Am. J. Hum. Genet. 54, 191–200 (1994).

    CAS  Google Scholar 

  27. Winkler, G.S. et al. TFIIH with inactive XPD helicase functions in transcription initiation but is defective in DNA repair. J. Biol. Chem. 275, 4258–4266 (2000).

    Article  CAS  Google Scholar 

  28. Roy, R. et al. The DNA-dependent ATPase activity associated with the class II transcription factor BTF2/TFIIH. J. Biol. Chem. 269 , 9826–9832 (1994).

    CAS  Google Scholar 

  29. Evans, E., Fellows, J., Coffer, A. & Wood, R.D. Open complex formation around lesion during nucleotide excision repair provides a structure for cleavage by human XPG protein. EMBO J. 16, 625– 638 (1997).

    Article  CAS  Google Scholar 

  30. Sijbers, A.M. et al. Mutational analysis of the human nucleotide excision repair gene ERCC1. Nucleic Acids Res. 24, 3370– 3380 (1996).

    Article  CAS  Google Scholar 

  31. Singleton, B.K., Torres-Arzayus, M.I., Rottinghaus, S.T., Taccioli, G.E. & Jeggo, P.A. The C terminus of Ku80 activates the DNA-dependent protein kinase catalytic subunit. Mol. Cell. Biol. 19, 3267– 3277 (1999).

    Article  CAS  Google Scholar 

  32. Waisfisz, Q. et al. A physical complex of the Fanconi anemia proteins FANCG/XRCC9 and FANCA. Proc. Natl Acad. Sci. USA 96, 10320–10325 (1999).

    Article  CAS  Google Scholar 

  33. Winkler, G.S. et al. Affinity purification of human DNA repair/transcription factor TFIIH using epitope-tagged xeroderma pigmentosum B protein. J. Biol. Chem. 273, 1092–1098 (1998).

    Article  CAS  Google Scholar 

  34. Weeda, G. et al. The XPB subunit of repair/transcription factor TFIIH directly interacts with SUG1, a subunit of the 26S proteasome and putative transcription factor. Nucleic Acids Res. 25, 2274– 2283 (1997).

    Article  CAS  Google Scholar 

  35. van Oosterwijk M.F. et al. Lack of transcription-coupled repair of acetylaminofluorene DNA adducts in human fibroblasts contrasts their efficient inhibition of transcription . J. Biol. Chem. 273, 13599– 13604 (1998).

    Article  CAS  Google Scholar 

  36. Svejstrup, J.Q. et al. Different forms of TFIIH for transcription and DNA repair: holo-TFIIH and a nucleotide excision repairosome. Cell 80, 21–28 (1995).

    Article  CAS  Google Scholar 

  37. Satoh, M.S. & Hanawalt, P.C. Competent transcription initiation by RNA polymerase II in cell free extracts from xeroderma pigmentosum groups B and D in an optimized RNA transcription assay. Biochim. Biophys. Acta 1354, 241–251 (1997).

    Article  CAS  Google Scholar 

  38. Satoh, M.S. & Hanawalt, P.C. TFIIH-mediated nucleotide excision repair and initiation of mRNA transcription in an optimized cell-free DNA repair and RNA transcription assay. Nucleic Acids Res. 24, 3576–3582 (1996).

    Article  CAS  Google Scholar 

  39. Houtsmuller A.B., . et al. Action of DNA repair endonuclease ERCC1/XPF in living cells . Science 284, 958–961 (1999).

    Article  CAS  Google Scholar 

  40. Gerard, M. et al. Purification and interaction properties of the human RNA polymerase B(II) general transcription factor BTF2. J. Biol. Chem. 266, 20940–20945 (1991).

    CAS  Google Scholar 

  41. Sambrook, J., Fritsch, E. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).

    Google Scholar 

Download references

Acknowledgements

We thank D. Bootsma for support; F. Coin, N.G.J. Jaspers, A. Lehman, M. Stefanini, G.S. Winkler and G. Weeda for discussions; A. Fery and J.L. Weickert for technical assistance; A. Raams for cell culture; and S. Vicaire for DNA sequencing. E.B. was supported by a Ligue Nationale Contre le Cancer fellowship, J.A. by la Fondation pour la Recherche Médicale. This work was supported by grants from the Institut National de la Santé et de la Recherche Médicale, the Centre National de la Recherche Scientifique, the Hôpital Universitaire de Strasbourg, by HFSP and EEC grants to both J.M.E. and J.H.J.H., the Association pour la Recherche sur le Cancer, by the Dutch Cancer Society, a NIH programme to J.H.J.H., the Research Institute for Diseases in the Elderly, funded by the Ministry of Education & Science and the Ministry of Health, Welfare and Sports, through the Netherlands Organization for Scientific Research (NWO) and the Louis Jeantet Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jan H.J. Hoeijmakers or Jean-Marc Egly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vermeulen, W., Bergmann, E., Auriol, J. et al. Sublimiting concentration of TFIIH transcription/DNA repair factor causes TTD-A trichothiodystrophy disorder. Nat Genet 26, 307–313 (2000). https://doi.org/10.1038/81603

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/81603

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing