Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Imprint switching on human chromosome 15 may involve alternative transcripts of the SNRPN gene

Abstract

Imprinting on human chromosome 15 is regulated by an imprinting centre, which has been mapped to a 100–kb region including exon 1 of SNRPN. From this region we have identified novel transcripts, which represent alternative transcripts of the SNRPN gene. The novel exons lack protein coding potential and are expressed from the paternal chromosome only. We have also identified intragenic deletions and a point mutation in patients who have Angelman or Prader–Willi syndrome due to a parental imprint switch failure. This suggests that imprint switching on human chromosome 15 may involve alternative SNRPN transcripts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Glenn, C.C., Porter, K.A., Jong, M.T.C., Nicholls, R.D. & Driscoll, D.J. Functional imprinting and epigenetic modification of the human SNRPN gene. Hum. Mol. Genet. 2, 2001–2005 (1993).

    Article  CAS  Google Scholar 

  2. Nakao, M. et al. Imprinting analysis of three genes in the Prader-Willi/Angelman region: SNRPN, E6-associated protein, and PAR-2 (D15S225E). Hum. Mol. Genet. 3, 309–315 (1994).

    Article  CAS  Google Scholar 

  3. Reed, M. & Leff, S. Maternal imprinting of human SNRPN, a gene deleted in Prader-Willi syndrome. Nature Genet. 6, 163–167 (1994).

    Article  CAS  Google Scholar 

  4. Glenn, C.C. et al. Gene structure, DNA methylation and imprinted expression of the human SNRPN gene. Am. J. Hum. Genet. 58, 335–346 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Özcelik, T. et al. Small nuclear ribonucleoprotein polypeptide N (SNRPN), an expressed gene in the Prader-Willi syndrome critical region. Nature Genet. 2, 265–269 (1992).

    Article  Google Scholar 

  6. Sutcliffe, J.S. et al. Deletions of a differentially methylated CpG island at the SNRPN gene define a putative imprinting control region. Nature Genet. 8, 52–58 (1994).

    Article  CAS  Google Scholar 

  7. Wevrick, R., Kerns, J.A. & Francke, U. Identification of a novel paternally expressed gene in the Prader-Willi syndrome region. Hum. Mol. Genet. 3, 1877–1882 (1994).

    Article  CAS  Google Scholar 

  8. Razin, A. & Cedar, H. DNA methylation and genomic imprinting. Cell 77, 473–476 (1994).

    Article  CAS  Google Scholar 

  9. Driscoll, D.J. et al. A DNA methylation imprint, determined by the sex of the parent, distinguishes the Angelman and Prader-Willi syndromes. Genomics 13, 917–924 (1992).

    Article  CAS  Google Scholar 

  10. Dittrich, B. et al. Molecular diagnosis of the Prader-Willi and Angelman syndromes by detection of parent-of-origin specific DNA methylation in 15q11–13. Hum. Genet. 90, 313–315 (1992).

    Article  CAS  Google Scholar 

  11. Dittrich, B., Suiting, K., Groβ, S. & Horsthemke, B. Characterization of a methylation imprint in the Prader-Willi syndrome region. Hum. Mol. Genet. 2, 1995–1999 (1993).

    Article  CAS  Google Scholar 

  12. Suiting, K. et al. Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nature Genet. 9, 395–400 (1995).

    Article  Google Scholar 

  13. Glenn, C.C. et al. Modification of 15q11–q13 DNA methylation imprints in unique Angelman and Prader-Willi patients. Hum. Mol. Genet. 2, 1377–1382 (1993).

    Article  CAS  Google Scholar 

  14. Buiting, K. et al. Detection of aberrant DNA methylation in unique Prader-Willi syndrome patients and ist diagnostic implications. Hum. Mol. Genet. 3, 893–895 (1994).

    Article  CAS  Google Scholar 

  15. Ledbetter, D. et al. Deletions of chromosome 15 as a cause of the Prader-Willi syndrome. New Engl. J. Med. 304, 325–329 (1981).

    Article  CAS  Google Scholar 

  16. Knoll, J.H.M. et al. Angelman and Prader-Willi syndrome share a common chromosome 15 deletion but differ in parental origin of the deletion. Am. J. Med. Genet. 32, 285–290 (1989).

    Article  CAS  Google Scholar 

  17. Nicholls, R.D., Knoll, J.H.M., Butler, M.G., Karam, S. & Lalande, M. Genetic imprinting suggested by maternal heterodisomy in non-deletion Prader-Willi syndrome. Nature 342, 281–285 (1989).

    Article  CAS  Google Scholar 

  18. Reis, A. et al. Imprinting mutations suggested by abnormal DNA methylation patterns in familial Angelman and Prader-Willi syndromes. Am. J. Hum. Genet. 54, 741–747 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kaplan, L.C. et al. Clinical heterogeneity associated with deletions in the long arm of chromosome 15: report of 3 new cases and their possible significance. Am. J. Med. Genet. 28, 45–53 (1987).

    Article  CAS  Google Scholar 

  20. Magenis, R.E., Brown, M.G., Lacy, D.A., Budden, S. & LaFranchi, S. Is Angelman syndrome an alternate result of del(15)(q11 q13)? Am. J. Med. Genet. 28, 829–838 (1987).

    Article  CAS  Google Scholar 

  21. Pembrey, M. et al. The association of AngelmanOs syndrome with deletions within 15q11–13. J. Med. Genet. 26, 73–77 (1989).

    Article  CAS  Google Scholar 

  22. Malcolm, S. et al. Uniparental paternal disomy in Angelman's syndrome. Lancet 337, 694–697 (1991).

    Article  CAS  Google Scholar 

  23. Clayton-Smith, J. et al. Further evidence for dominant inheritance at the chromosome 15q11-13 locus in familial Angelman syndrome. Am. J. Hum. Genet. 44, 256–260 (1992).

    Article  CAS  Google Scholar 

  24. Wagstaff, J. et al. Maternal but not paternal transmission of 15q11–q13-linked nondeletion Angelman syndrome leads to phenotypic expression. Nature Genet. 1, 291–294 (1992).

    Article  CAS  Google Scholar 

  25. Saitoh, S. et al. Minimal definition of the imprinting centre and fixation of a chromosome 15q11–13 epigenotype by imprinting mutations. Proc. Natl. Acad. Sci USA 93, 7811–7815

  26. Saitoh, S. et al. Familial Angelman syndrome caused by imprinted submicroscopic deletion encompassing GABAA receptor b3-subunit gene. Lancet 339, 366–367 (1992).

    Article  CAS  Google Scholar 

  27. Wagstaff, J., Shugart, Y.Y. & Lalande, M. Linkage analysis in familial Angelman syndrome. Am. J. Hum. Genet. 53, 105–112 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Horsthemke, B., Dittrich, B. & Buiting, K. Parent-of-origin specific DNA methylation and imprinting mutations on human chromosome 15. in Parental imprinting: causes and consequences (eds Ohlsson, R., Hall, K. & Ritzen, M.) 295–308 (Cambridge University Press, 1995).

    Google Scholar 

  29. Korn, B. et al. A strategy for the selection of transcribed sequences in theXq28 region. Hum. Mol. Genet. 1, 235–242 (1992).

    Article  CAS  Google Scholar 

  30. Brockdorff, N. et al. The product of the mouse Xist gene is a 15-kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71, 515–526 (1992).

    Article  CAS  Google Scholar 

  31. Orlando, V. & Paro, R. Chromatin multiprotein complexes involved in the maintenance of transcription patterns. Curr. Opin. Genet. Dev. 5, 174–179 (1995).

    Article  CAS  Google Scholar 

  32. Reik, W. et al. Imprinting mutations in the Beckwith-Wiedemann syndrome suggested by an altered imprinting pattern in the IGF2-H19 domain. Hum. Mol. Genet. 4, 2379–2385 (1995).

    Article  CAS  Google Scholar 

  33. Chaillet, J.R., Knoll, J.H., Horsthemke, B. & Lalande, M. The syntenic relationship between the critical deletion region for the Prader-Willi/Angelman syndromes and proximal mouse chromosome 7. Genomics 11, 773–776 (1991).

    Article  CAS  Google Scholar 

  34. Nicholls, R.D. et al. Evaluation of potential models for imprinted and nonimprinted components of human chromosome 15q11–q13 syndromes by fine-structure homology mapping in the mouse. Proc. Natl. Acad. Sci. USA 90, 2050–2054 (1993).

    Article  CAS  Google Scholar 

  35. Chan, C.T.J. et al. Molecular mechanisms in Angelman syndrome: a survey of 93 patients. J. Med. Genet. 30, 895–902 (1993).

    Article  CAS  Google Scholar 

  36. Mutirangura, A. et al. A complete YAC contig of the Prader-Willi/Angelman chromosome region (15q11–q13) and refined localization of the SNRPN gene. Genomics 18, 546–552 (1993).

    Article  CAS  Google Scholar 

  37. Horsthemke, B., Greger, V., Barnert, H.J., HÖpping, W. & Passarge, E. Detection of submicroscopic deletions and a DNA polymorphism at the retinoblastoma locus. Hum. Genet. 76, 257–261 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Horsthemke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dittrich, B., Buiting, K., Korn, B. et al. Imprint switching on human chromosome 15 may involve alternative transcripts of the SNRPN gene. Nat Genet 14, 163–170 (1996). https://doi.org/10.1038/ng1096-163

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1096-163

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing