Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Minisatellite mutation rate variation associated with a flanking DNA sequence polymorphism

Abstract

Human minisatellite mutation in the male germline frequently involves complex inter-allelic gene conversion events restricted to one end of the tandem repeat array. Some alleles at minisatellite MS32 show reduced variability in human populations and are associated with a G to C transversion upstream of the array. Analysis of single sperm demonstrated a frequently profound reduction in mutation rate at alleles carrying the C variant. This mutation suppression acts in cis, but does not affect the ability of an allele to act as sequence donor during gene conversion. This mutation rate polymorphism provides strong evidence for elements near the minisatellite that regulate tandem repeat instability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jeffreys, A.J. & Pena, S.D.J. Brief introduction to human DNA fingerprinting. in DNA fingerprinting: state of the science (etePena, S.D.J., Chakraborty, R., Epplen, J.T. & Jeffreys, A.J.) 1–20 (Blrkhauser Verlag, Basel, 1993).

    Google Scholar 

  2. Jeffreys, A.J., Neumann, R. & Wilson, V. Repeat unit sequence variation in minisatellites: a novel source of DNA polymorphism for studying variation and mutation by single molecule analysis. Cell 60, 473–485 (1990).

    Article  CAS  Google Scholar 

  3. Jeffreys, A.J. et al. Minisatellite repeat coding as a digital approach to DNA typing. Nature 354, 204–209 (1991).

    Article  CAS  Google Scholar 

  4. Armour, J.A.L., Harris, P.C. & Jeffreys, A.J. Allelic diversity at minisatellite MS205 (D16S309): evidence for polarized variability. Hum. molec. Genet. 2, 1137–1145 (1993).

    Article  CAS  Google Scholar 

  5. Neil, D.L. & Jeffreys, A.J. Digital DNA typing at a second hypervariable locus by minisatellite variant repeat mapping. Hum. molec. Genet. 2, 1129–1135 (1993).

    Article  CAS  Google Scholar 

  6. Buard, J. & Vergnaud, G. Complex recombination events at the hyper mutable minisatellite CEB1 (D2S90). EMBO J. (On the press).

  7. Jeffreys, A.J., Royle, N.J., Wilson, V. & Wong, Z. Spontaneous mutation rates to new length alleles at tandem repetitive hypervariable loci in human DNA. Nature 332, 278–281 (1988).

    Article  CAS  Google Scholar 

  8. Vergnaud, G. et al. The use of synthetic tandem repeats to isolate new VNTR loci: cloning of a human hypermutable sequence. Genomics 11, 135–144 (1991).

    Article  CAS  Google Scholar 

  9. Jeffreys, A.J. et al. Complex gene conversion events in germline mutation at human minisatellites. Nature Genet. 6, 136–145 (1994).

    Article  CAS  Google Scholar 

  10. Allen, M.J. et al. Tandemly repeated transgenes of the human minisatellite MS32 (D1S8), with novel mouse gamma satellite integration. Nucl. Acids Res. 22, 2976–2981 (1994).

    Article  CAS  Google Scholar 

  11. Monckton, D.G., Tamaki, K., MacLeod, A., Neil, D.L. & Jeffreys, A.J. Allele-specific MVR-PCR analysis at minisatellite D1S8. Hum. molec. Genet. 2, 513–519 (1993).

    Article  CAS  Google Scholar 

  12. Tamaki, K., Monckton, D.G., MacLeod, A., Allen, M. & Jeffreys, A.J. Four-state MVR-PCR: increased discrimination of digital DNA typing by simultaneous analysis of two polymorphic sites within minisatellite variant repeats at D1S8. Hum. molec. Genet. 2, 1629–1632 (1993).

    Article  CAS  Google Scholar 

  13. Sun, H., Treco, D. & Szostak, J.W. Extensive 3′-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell 64, 1155–1161 (1991).

    Article  CAS  Google Scholar 

  14. Schultes, N.P. & Szostak, J.W. A poly(dA.dT) tract is a component of the recombination initiation site at the ARG4 locus in Saccharomyces cerevisiae . Molec. cell. Biol. 11, 322–328 (1991).

    Article  CAS  Google Scholar 

  15. Massey, B. & Nicholas, A. The control in cis of the position and the amount of the ARG4 meiotic double-strand break of Saccharomyces cerevisiae . EMBOJ. 12, 1459–1466 (1993).

    Article  Google Scholar 

  16. Maeda, N. Nucleotide sequence of the haptoglobin and haptoglobin-related gene pair. J. biol. Chem. 260, 6690–6709 (1985).

    Google Scholar 

  17. Armour, J.A.L., Wong, Z., Wilson, V., Royle, N.J. & Jeffreys, A.J. Sequences flanking the repeat arrays of human minisatellites: association with tandem and dispersed repeat elements. Nucl. Acids Res. 17, 4925–4935 (1989).

    Article  CAS  Google Scholar 

  18. Kelly, R., Gibbs, M., Collick, A. & Jeffreys, A.J. Spontaneous mutation at the hypervariable mouse minisatellite locus Ms6-hm: flanking DNA sequence and analysis of germline and early somatic mutation events. Proc. R. Soc. Lond. B 245, 235–245 (1991).

    Google Scholar 

  19. Mermer, B., Colb, M. & Krontiris, T.G. A family of short, interspersed repeats is associated with tandemly repetitive DNA in the human genome. Proc. natn. Acad. Sci. U.S.A. 84, 3320–3324 (1987).

    Article  CAS  Google Scholar 

  20. Smit, A. Identification of a new, abundant superfamily of mammalian LTR-transposons. Nucl. Acids Res. 21, 1863–1872 (1993).

    Article  CAS  Google Scholar 

  21. Sylla, B.S., Allard, D., Roy, G., Bourgaux-Ramoisy, D. & Bourgaux, P. A mouse DNA sequence that mediates integration and excision of polyoma virus DNA. Gene 29, 343–350 (1984).

    Article  CAS  Google Scholar 

  22. Misra, R., Shih, A., Rush, M., Wong, E. & Schmid, C.W. Cloned extrachromosomal circular DNA copies of the human transposable element THE-1 are related predominantly to a single type of family member. J. molec. Biol. 196, 233–243 (1987).

    Article  CAS  Google Scholar 

  23. Edelman, W., Kroger, B., Goller, M. & Horak, I. A recombinational hotspot identified in an in vitro system. Cell 57, 937–946 (1989).

    Article  Google Scholar 

  24. Keshet, E., Schiff, R. & Ahuva, I. Mouse retrotransposons: a cellular reservoir of long terminal repeats (LTR) elements with diverse transcriptional specificities. Adv. cancer Res. 56, 215–251 (1991).

    Article  CAS  Google Scholar 

  25. Fields, C.A., Grady, D.L. & Moyzis, R.K. The human THE-LTR(O) and MstII interspersed repeats are subfamilies of a single widely distributed highly variable repeat family. Genomics 13, 431–436 (1992).

    Article  CAS  Google Scholar 

  26. Pizutti, A., Pieretti, M., Fenwick, R.G., Gibbs, R.A. & Caskey, C.T. Atransposon-like element in the deletion-prone region of the dystrophin gene. Genomics 13, 594–600 (1992).

    Article  Google Scholar 

  27. Sanha, B.K. Recruitment of multiple alleles within the Eb recombinational hotspot in murine MHC. Mamm. Genome. 4, 565–570 (1993).

    Article  Google Scholar 

  28. Richards, R.I. et al. Evidence of founder chromosomes in fragileX syndrome. Nature Genet. 1, 257–260 (1992).

    Article  CAS  Google Scholar 

  29. Richards, R.I. & Sutherland, G.R. Dynamic mutations: a new class of mutations causing human disease. Cell 70, 709–712 (1992).

    Article  CAS  Google Scholar 

  30. Oudet, C., von Koskull, H., Nordström, A.M., Peippo, M. & Mandel, J.-L. Striking founder effect for the Fragile X syndrome in Finland. Eur. J. hum. Genet. 1, 181–189 (1993).

    Article  CAS  Google Scholar 

  31. The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucteotide repeat that is expanded and unstable on Huntington's Disease chromosomes. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  32. Harley, H.G. et al. Expansion of an unstable DNA region and phenotypic variation in myotonic dystrophy. Nature 355, 545–546 (1992).

    Article  CAS  Google Scholar 

  33. Imbert, G., Kretz, C., Johnson, K. & Mandel, J.-L. Origin of the expansion mutation in myotonic dystrophy. Nature Genet. 4, 72–76 (1993).

    Article  CAS  Google Scholar 

  34. Chung, M. et al. Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I. Nature Genet. 5, 254–258 (1993).

    Article  CAS  Google Scholar 

  35. Kunst, C.B. & Warren, S.T. Cryptic and polar variation of the fragile X repeat could result in predisposing normal alleles. Cell 77, 853–661 (1994).

    Article  CAS  Google Scholar 

  36. Zhong, N., Dobkin, C. & Brown, W.T. A complex mutable polymorphism located within the fragile X gene. Nature Genet. 5, 248–253 (1993).

    Article  CAS  Google Scholar 

  37. Macpherson, J.N., Bullman, H., Youings, S.A. & Jacobs, P.A. Insert size and flanking haplotype in fragile X and normal populations: possible multiple origins for the fragile X mutation. Hum. molec. Genet. 3, 399–405 (1994).

    Article  CAS  Google Scholar 

  38. Ewens, W.J. The sampling theory of selectively neutral alleles. Theor. Popul. Biol. 3, 87–112 (1972).

    Article  CAS  Google Scholar 

  39. Tamaki, K. et al. Minisatellite variant repeat (MVR) mapping: analysis of ‘null’ repeat units at D1S8. Hum. molec. Genet. 1, 401–406 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monckton, D., Neumann, R., Guram, T. et al. Minisatellite mutation rate variation associated with a flanking DNA sequence polymorphism. Nat Genet 8, 162–170 (1994). https://doi.org/10.1038/ng1094-162

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1094-162

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing