Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Normal long bone growth and development in type X collagen-null mice

Abstract

To investigate the role of type X collagen in skeletal development, we have generated type X collagen-null mice. Surprisingly, mice without type X collagen were viable and fertile and had no gross abnormalities in long bone growth or development. No differences were detected between the type X collagen-null mice and controls when growth plates of both newborn and 3-week old mice were examined by histology and by immunostaining for extracellular matrix components of bone including osteopontin, osteocalcin and type II collagen. Our results suggest that type X collagen is not required for long bone development. However, mice and humans with dominant acting type X collagen mutations have bone abnormalities, suggesting that only the presence of abnormal type X collagen can modify bone growth and development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schmid, T.M. & Linsenmayer, T.F. Immunohistochemical localization of short chain cartilage collagen (type X) in avian tissues. J. Cell Biol. 100, 598–605 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Gerstenfeld, L.C. & Landis, W.J. Gene expression and extracellular matrix ultrastructure of a mineralizing chondrocyte cell culture system. J. Cell Biol. 112, 501–513 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Poole, R. The growth plate: cellular physiology, cartilage assembly and mineralization. in Cartilage: molecular aspects (eds Hall, B. & Newman, S.) 6, 179–211 (1991).

    Google Scholar 

  4. Schmid, T.M. & Linsenmayer, T.F. Type X collagen. in Structure and function of collagen types (eds Mayne, R. & Burgeson, R.E.) 223–259 (Academic Press, Orlando, 1987).

    Google Scholar 

  5. Elima, K. et al. The mouse collagen X gene: complete nucleotide sequence, exon structure and expression pattern. Biochem. J. 289, 247–253 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vuorio, E. & de Crombrugghe, B. The family of collagen genes. A. Rev. Biochem. 59, 837–872 (1990).

    Article  CAS  Google Scholar 

  7. Muragaki, Y. et al. The α2(VIII) collagen gene. J. biol. Chem. 266, 7721–7727 (1991).

    CAS  PubMed  Google Scholar 

  8. Yamaguchi, N. et al. The α1 (VIII) collagen gene is homologous to the α1 (X) collagen gene and contains a large exon encoding the entire triple helical and carboxyl-terminal non triple helical domains of the α1(VIII) polypeptide. J. biol. Chem. 266, 4508–4513 (1991).

    CAS  PubMed  Google Scholar 

  9. Poole, A.R. & Pidoux, I. Immunoelectron microscopic studies of type X collagen in endochondral ossification. J. Cell Biol. 109, 2547–2554 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Schmid, T.M. & Linsenmayer, T.F. Immunoelectron microscopy of type X collagen: supramolecular forms within embryonic chick cartilage. Dev. Biol. 138, 53–62 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Kwan, A.P.L., Cummings, C.E., Chapman, J.A. & Grant, M.E. Macromolecular organization of chicken type X collagen in vitro. J. Cell Biol. 114, 597–604 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, Q. et al. Long-range movement and fibril association of type X collagen within embryonic cartilage matrix. Proc. natn. Acad. Sci. U.S.A. 87, 8046–8050 (1990).

    Article  CAS  Google Scholar 

  13. Schmid, T.M., Popp, R.G. & Linsenmayer, T.F. Hypertrophic cartilage matrix. Type X collagen, supramolecular assembly, and calcification. Ann. N.Y. Acad. Sci. 580, 64–73 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Thomas, J.T., Boot-Handford, R.P. & Grant, M.E. Modulation of type X collagen gene expression by calcium β-glycerophosphate and levamisole: Implications for a possible role for type X collagen in endochondral bone formation. J. Cell Sci. 95, 639–648 (1990).

    CAS  PubMed  Google Scholar 

  15. Wu, L.N.Y., Sauer, G.R., Genge, B.R. & Wuthier, R.E. Induction of mineral deposition by primary cultures of chicken growth plate chondrocytes in ascorbate-containing media. J. biol. Chem. 264, 21346–21355 (1989).

    CAS  PubMed  Google Scholar 

  16. Jacenko, O., LuValle, P.A. & Olsen, B.R. Spondylometaphyseal dysplasia in mice carrying a dominant negative mutation in a matrix protein specific for cartilage-to-bone transition. Nature 365, 56–61 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Bradley, A. Production and analysis of chimeric mice. in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach (ed. Robertson, E. J.) 113–151 (IRL Press, Oxford, 1987).

    Google Scholar 

  18. Capecchi, M.R. The new mouse genetics: altering the genome by gene targeting. Trends Genet. 5, 70–76 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Butler, W.T. The nature and significance of osteopontin. Connective tissue Res. 23, 123–136 (1989).

    Article  CAS  Google Scholar 

  20. Hauschka, P.V. et al. Osteocalcin and Matrix Gla Protein: vitamin K-dependent proteins in bone. Physiol. Rev. 69, 990–1047 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Fitch, J.M. et al. Acquisition of type IX collagen by the developing avian primary corneal stroma and vitreous. Dev. Biol. 128, 396–405 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Kirsch, T. & Von Der Mark, K. Isolation of a human type X collagen and immunolocalization in fetal human cartilage. Eur. J. Biochem. 196, 575–580 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Searle, A.G. Genetical studies on the skeleton of the mouse. IX. Causes of skeleton variation within pure lines. J. Genet. 52, 68–102 (1954).

    Article  Google Scholar 

  24. Culling, C.F.A., Allison, R.T. & Barr, W.T. in Cellular pathology technique (ButterWorths, London, 1985).

    Google Scholar 

  25. Warman, M.L. et al. A type X collagen mutation causes Schmid metaphyseal chondrodysplasia. Nature Genet. 5, 79–82 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Mclntosh, I. et al. Additional mutations of type X collagen confirm COL1OA1 as the Schmid metaphyseal chondrodysplasia locus. Hum. molec. Genet. 3, 303–307 (1994).

    Article  Google Scholar 

  27. Wallis, G.A. et al. Amino acid substitutions of conserved residues in the carboxyl-terminal domain of the a1(X) chain of type X collagen occur in two unrelated families with metaphyseal chondrodysplasia type Schmid. Am. J. hum. Genet. 54, 169–178 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Dharmavaram, R.M. et al. Identification of a mutation in type X collagen in a family with Schmid metaphyseal chondrodysplasia. Hum. molec. Genet. 4, 507–509 (1994).

    Article  Google Scholar 

  29. Kramer, J.M. et al. The sqt-1 gene of C. elegans encodes a collagen critical for organismal morphogenesis. Cell 55, 555–565 (1988).

    Article  CAS  PubMed  Google Scholar 

  30. Kramer, J.M. et al. The Caenorhabditis elegans rol–6 gene, which interacts with the sgt-1 collagen gene to determine organismal morphology, encodes a collagen. Molec. cell Biol. 10, 2081–2089 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Soriano, P., Montgomery, C., Geske, R. & Bradley, A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64, 693–702 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. Mansour, S.L., Thomas, K.R. & Capecchi, M.R. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352 (1988).

    Article  CAS  PubMed  Google Scholar 

  33. McMahon, A.P. & Bradley, A. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62, 1073–1085 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Ramirez-Solis, R., Rivera-Perez, J., Wallace, J.D., Wims, M. & Bradley, A. Genomic DNA microextraction: A method to screen numerous samples. Anal. Biochem. 201, 331–335 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Garofalo, S. et al. Reduced amounts of cartilage collagen fibrils and growth plate anomalies in transgenic mice harboring a glycine-to-cysteine mutation in the mouse type II procollagen α1-chain gene. Proc. natn. Acad. Sci. U.S.A. 88, 9648–9652 (1991).

    Article  CAS  Google Scholar 

  36. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular cloning: a laboratory manual 2nd edn (Cold Spring Harbor Press, New York, 1989).

  37. McLeod, M.J. Differential staining of cartilage and bone in whole mouse fetuses by alcian blue and alizarin red S. Teratology 22, 299–301 (1980).

    Article  CAS  PubMed  Google Scholar 

  38. Mark, M.P. et al. Immunoistochemical demonstration of a 44-kD phosphoprotein in developing rat bones. J. Histochem. Cytochem. 35, 707–715 (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosati, R., Horan, G., Pinero, G. et al. Normal long bone growth and development in type X collagen-null mice. Nat Genet 8, 129–135 (1994). https://doi.org/10.1038/ng1094-129

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1094-129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing