Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reduced transcriptional regulatory competence of the androgen receptor in X–linked spinal and bulbar muscular atrophy

A Correction to this article was published on 01 February 1994

Abstract

Expansion of the long (CAG; glutamine)n repeat in the first exon of the X–linked human androgen receptor gene (hAR) causes spinal and bulbar muscular atrophy, frequently in association with mild androgen insensitivity. The relevant normal motor neurons are preferentially stimulated by androgen, however no motor neuron disorder occurs with any other known AR mutation, including those that cause complete androgen insensitivity. We have found that a polyglutamine (Gln) expanded AR transactivates an androgen–responsive reporter gene subnormally. Other groups have reported that a poly Gln–deleted AR transactivates normally. A parsimonious interpretation of all these facts is that poly Gln expansion causes the AR to lose a function that is necessary for full androgen sensitivity and to gain a function that is selectively motor neuronotoxic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kennedy, W.R., Alter, M. & Sung, J.H. Progressive proximal spinal and bulbar muscular atrophy of late onset: A sex-linked recessive trait. Neurology 18, 671–680 (1968).

    Article  CAS  PubMed  Google Scholar 

  2. Olney, R.K., Aminoff, M.J. & So, Y.T. Clinical and electrodiagnostic features of X-linked recessive bulbospinal neuronopathy. Neurology 47, 1111–1120 (1990).

    Google Scholar 

  3. Arbizu, T., Santamaria, J., Gomez, J.M., Quilez, A. & Serra, J.P. A family with adult spinal and bulbar muscular atrophy, X-linked inheritance and associated testicular failure. J. neurol. Sci. 59, 371–382 (1983).

    Article  CAS  PubMed  Google Scholar 

  4. Brown, C.J. et al. Androgen receptor locus on the X chromosome: Regional localization to Xq 11–12 and description of a DNA polymorphism. Am. J. hum. Genet. 44, 264–269 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Fischbeck, K.H. et al. Localization of the gene for X-linked spinal muscular atrophy. Neurology 36, 1595–1598 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. La Spada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E. & Fischbeck, K.H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Edwards, A., Hammond, H.A., Jin, L., Caskey, C.T. & Chakraborty, R. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics 12, 241–253 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. La Spada, A.R. et al. Meiotic stability and genotype-phenotype correlation of the trinucleotide repeat in X-linked spinal and bulbar muscular atrophy. Nature Genet. 2, 301–304 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. The Huntingdon's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  10. Orr, H.T. et al. Expansion of an unstable trinuleotide CAG repeat in spinocerebellar ataxia type 1. Nature Genet. 4, 221–226 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Doyu, M. et al. Severity of X-linked recessive bulbospinal neuronopathy correlates with size of the tandem CAG repeat in androgen receptor gene. Ann. Neurol. 32, 707–710 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Biancalana, V. et al. Moderate instability of the trinucleotide repeat in spinobulbar muscular atrophy. Hum. molec. Genet. 1, 255–258 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Brook, J.D. et al. Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68, 799–808 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Verkerk, A.J.M.H. et al. Identification of a gene (FMR–1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914 (1992).

    Article  Google Scholar 

  15. Chang, C., Kokontis, J. & Liao, S. Structural analysis of complementary DNA and amino acid sequences of human and rat androgen receptors. Proc. natn. Acad. Sci. U.S.A. 85, 7211–7215 (1988).

    Article  CAS  Google Scholar 

  16. Faber, P.W. et al. The N-terminal domain of the human androgen receptor is encoded by one, large exon. Molec. cell. Endocrinol. 61, 257–262 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Faber, P.W. et al. The mouse androgen receptor: functional analysis of the protein and characterization of the gene. Biochem. J. 278, 269–278 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kao, C.C. et al. Cloning of a transcriptionally active human TATA binding factor. Science 248, 1646–1649 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Riggins, G.J. et al. Human genes containing polymorphic trinucleotide repeats. Nature Genet. 2, 186–191 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Courey, A.J. & Tjian, R. Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell 55, 887–898 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Pirotta, V., Manet, E., Hardon, E., Bickel, S.E. & Benson, M. Structure and sequence of the Drosphilia zeste gene. EMBO J. 6, 791–799 (1987).

    Article  Google Scholar 

  22. Blochlinger, K., Bodmer, R., Jack, J., Jan, J.Y. & Jan, Y.N. Primary structure and expression of a product from cut, a locus involved in specifying sensory organ identity in Drosphilia. Nature 333, 629–635 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Sar, M. & Stumpf, W.E. Androgen concentration in motor neurons of cranial nerves and spinal cord. Science 197, 77–80 (1977).

    Article  CAS  PubMed  Google Scholar 

  24. Sheridan, P.J. & Weaker, F.J. Androgen receptor systems in the brain stem of the primate. Brain Res. 235, 225–232 (1982).

    Article  CAS  PubMed  Google Scholar 

  25. Yu, W.A. & McGinnis, M.Y. Androgen receptor levels in cranial nerve nuclei and tongue muscles in rats. J. Neurosci 6, 1302–1307 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hauser, K.F., MacLusky, N.J. & Toran-Allerand, C.D. Androgen action in fetal mouse spinal cord cultures: Metabolic and morphologic aspects. Brain Res. 406, 62–72 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. Breedlove, S.M. Cellular analyses of hormone influence on motor neuronal development and function. J. Neurobiol. 17, 157–176 (1986).

    Article  CAS  PubMed  Google Scholar 

  28. Yu, W.A. & Yu, M.C. Acceleration of the regeneration of the crushed hypoglossal nerve by testosterone. Exp. Neurol. 80, 349–360 (1983).

    Article  CAS  PubMed  Google Scholar 

  29. Yu, W.A. Administration of testosterone attenuates neuronal loss following axotomy in the brain-stem motor nuclei of female rats. J. Neurosci. 9, 3908–3914 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kujawa, K.A., Kinderman, N.B. & Jones, K.J. Testosterone-induced acceleration of recovery from facial paralysis following crush axotomy of the facial nerve in male hamsters. Exp. Neurol. 105, 80–85 (1989).

    Article  CAS  PubMed  Google Scholar 

  31. Goldstein, L.A. & Sengelaub, D.R. Timing and duration of dihydrotestosterone treatment affect the development of motoneuron number and morphology in a sexually dimorphic rat spinal nucleus. J. comp. Neurol. 326, 147–157 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Jenster, G. et al. Domains of the human androgen receptor involved in steroid binding, transcriptional activation and subcellular localization. Molec. Endocrinol. 5, 1396–1404 (1991).

    Article  CAS  Google Scholar 

  33. Simental, J.A., Sar, M., Lane, M.V., French, F.S. & Wilson, E.M. Transcriptional activation and nuclear targeting signals of the human androgen receptor. J. biol. Chem. 266, 510–518 (1991).

    CAS  PubMed  Google Scholar 

  34. Tora, L., Gronemeyer, H., Turcotte, B., Gaub, M-P. & Chambon, P., The N-terminal region of the chicken progesterone receptor specifies target gene activation. Nature 333, 185–188 (1988).

    Article  CAS  PubMed  Google Scholar 

  35. Tora, L. et al. The human estrogen receptor has two independent nonacidic transcriptional activation functions. Cell 59, 477–487 (1989).

    Article  CAS  PubMed  Google Scholar 

  36. Stråhle, U. et al. Cooperative action of the glucocorticoid receptor and transcription factors. Cold Spring Harbor Symposia on Quantitative Biology 53, 835–841 (1988).

    Google Scholar 

  37. Levine, M. & Manley, J.L. Transcriptional repression of eukaryotic promoters. Cell 59, 405–408 (1989).

    Article  CAS  PubMed  Google Scholar 

  38. Yang-Yen, H-S. et al. Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein-protein interaction. Cell 62, 1205–1215 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. Frankel, A.D. & Kim, P.S. Modular structure of transcription factors: implications for gene regulation. Cell 65, 717–719 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Ing, N.H., Beekman, J.M., Tsai, S.Y., Tsai, M-J. & O'Malley, B.W. Members of the steroid hormone receptor superfamily interact with TFIIB (S300–II). J. biol. Chem. 267, 17617–17623 (1992).

    CAS  PubMed  Google Scholar 

  41. Mhatre, A. et al. Host cell-restricted expression of a ligand-selective mutant androgen receptor phenotype. Am. J. hum. Genet. 51, A321, Abst 1264, 1992.

    Google Scholar 

  42. Miesfield, R. et al. Genetic complementation of a glucocorticoid receptor deficiency by expression of cloned receptor cDNA. Cell 46, 389–399 (1986).

    Article  Google Scholar 

  43. Hollenberg, S.M. et al. Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature 318, 635–641 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Danielson, M., Northrop, J. & Ringold, G. The mouse glucocorticoid receptor: mapping of functional domains by cloning, sequencing and expression of wild-type and mutant receptor proteins. EMBO J. 5, 2513–2522 (1986).

    Article  Google Scholar 

  45. McPhaul, M.J. et al. Molecular basis of androgen resistance in a family with a qualitative abnormality of the androgen receptor and responsive to high-dose androgen therapy. J. clin. Invest. 87, 1413–1421 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Warner, C.L. et al. X-linked spinomuscular atrophy: a kindred with associated abnormal androgen receptor binding. Neurology 42, 2181–2184 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Matsuura, T. et al. Androgen receptor abnormality in X-linked spinal and bulbar muscular atrophy. Neurology 42, 1724–1726 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Araki, I., Harada, Y. & Kuno, M. Target-dependent hormonal control of neuron size in the rat spinal nucleus of the bulbocavernosus. J. Neurosci. 11, 3025–3033 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. La Spada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E. & Fischbeck, K.H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    Article  CAS  PubMed  Google Scholar 

  50. Higuchi, R. Simple and rapid preparation of samples for PCR, in PCR Technology (ed Erlich H.A.) 31–38 (Stockton Press, New York, 1989).

    Chapter  Google Scholar 

  51. Brinkmann, A.O. et al. The human androgen receptor: domain structure, genomic organization and regulation of expression. J. steroid Biochem. 34, 307–310 (1989).

    Article  CAS  PubMed  Google Scholar 

  52. MacGregor, G.R. & Caskey, C.T. Construction of plasmids that express E.coli β-galactosidase in mammalian cells. Nucleic Acids Res. 17, 2365 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kazemi-Esfarjani, P. et al. Substitution of valine-865 by methionine or leucine in the human androgen receptor causes complete or partial androgen insensitivity, respectively with distinct androgen receptor phenotypes. Molec. Endocrinol. 7, 37–46 (1993).

    CAS  Google Scholar 

  54. Gottlieb, B., Kaufman, M., Pinsky, L., Leboeuf, G. & Sotos, J.F. Extracellular correction of the androgen-receptor transformation defect in two families with complete androgen resistance. J. steroid Biochem. 28, 279–284 (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mhatre, A., Trifiro, M., Kaufman, M. et al. Reduced transcriptional regulatory competence of the androgen receptor in X–linked spinal and bulbar muscular atrophy. Nat Genet 5, 184–188 (1993). https://doi.org/10.1038/ng1093-184

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1093-184

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing