Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The core-binding factor β subunit is required for bone formation and hematopoietic maturation

Abstract

Core-binding factor β (Cbfβ) is the common non-DNA-binding subunit of the Cbf family of heterodimeric transcription factors. Mice deficient in Cbfβ have a severe block in fetal liver hematopoiesis at the stage of hematopoietic stem cell (HSC) emergence1,2. Here we show that by providing Cbfβ function in endothelial cells and hematopoietic progenitors we can rescue fetal liver hematopoiesis in Cbfβ-deficient embryos. The rescued mice die at birth, however, with severe defects in skeletal development, though intramembranous ossification occurs to some extent. Fetal liver hematopoiesis is restored at embryonic day (E) 12.5, but by E17.5 significant impairments in lymphopoiesis and myelopoiesis are observed. Thus, we conclude that the Cbfβ subunit is required for HSC emergence, bone formation and normal differentiation of lymphoid and myeloid lineage cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The GFP/Cbfβ protein is expressed in endothelial cells and in fetal liver hematopoietic progenitors, but not in differentiated blood cells.
Figure 2: The Tek-GFP/Cbfb transgene rescues the mid-gestation embryonic lethality of Cbfβ deficient mice, but uncovers a requirement for Cbfβ in bone formation.
Figure 3: Hematopoiesis in Cbfb−/− Tg(Tek-GFP/Cbfb) fetuses is perturbed by E17.5.

Similar content being viewed by others

References

  1. Wang, Q. et al. The CBFβ subunit is essential for CBFα2 (AML1) function in vivo. Cell 87, 697–708 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Sasaki, K. et al. Absence of fetal liver hematopoiesis in transcriptional co-activator, core binding factor β (Cbfb) deficient mice. Proc. Natl Acad. Sci. USA 93, 12359–12363 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jaffredo, T., Gautier, R., Eichmann, A. & Dieterlen-Lièvre, F. Intra-aortic hemopoietic cells are derived from endothelial cells during ontogeny. Development 125, 4575–4583 (1998).

    CAS  PubMed  Google Scholar 

  4. North, T.E. et al. Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 126, 2563–2575 (1999).

    CAS  PubMed  Google Scholar 

  5. Yokomizo, T. et al. Requirement of Runx1/AML1/PEBP2αB for the generation of haematopoietic cells from endothelial cells. Genes Cells 6, 13–23 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Sato, T.N. et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376, 70–74 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Schlaeger, T.M. et al. Uniform vascular-endothelial-cell-specific gene expression in both embryonic and adult transgenic mice. Proc. Natl Acad. Sci. USA 94, 3058–3063 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yano, M. et al. Expression and function of murine receptor tyrosine kinases, TIE and TEK, in hematopoietic stem cells. Blood 89, 4317–4326 (1997).

    CAS  PubMed  Google Scholar 

  9. Otto, F. et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89, 765–772 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Komori, T. et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89, 755–764 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Inada, M. et al. Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev. Dyn. 214, 279–290 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Kim, I., Otto, F., Zabel, B. & Mundlos, S. Regulation of chondrocyte differentiation by Cbfa1. Mech. Dev. 80, 159–170 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Okuda, T., van Deursen, J., Hiebert, S.W., Grosveld, G. & Downing, J.R. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84, 321–330 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, Q. et al. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc. Natl Acad. Sci. USA 93, 3444–3449 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, Q.-L. et al. Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109 (2002).

  16. Levanon, D. et al. The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J. 21, 3454–3456 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Levanon, D. et al. Spatial and temporal expression pattern of Runx3 (Aml2) and Runx1 (Aml1) indicates non-redundant functions during mouse embryogenesis. Mech. Dev. 109, 413–417 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Hayashi, K. et al. Overexpression of AML1 transcription factor drives thymocytes into the CD8 single-positive lineage. J. Immunol. 167, 4957–4965 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Hayashi, K. et al. Diminution of the AML1 transcription factor function causes differential effects on the fates of CD4 and CD8 single-positive T cells. J. Immunol. 165, 6816–6824 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Yoshida, C.A. et al. Core-binding factor β interacts with Runx2 and is required for skeletal development. Nature Genet. 32, 633–638 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Deguchi, K. et al. Excessive extramedullary hematopoiesis in Cbfa1-deficient mice with a congenital lack of bone marrow. Biochem. Biophys. Res. Comm. 255, 352–359 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Castilla, L.H. et al. Chromosome 16 inversion-generated fusion gene Cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukemia. Nature Genet. 23, 144–146 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Kundu, M. et al. Cbfβ interacts with Runx2 and has a critical role in bone development. Nature Genet. 32, 639–644 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Tahirov, T.H. et al. Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFβ. Cell 104, 755–767 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Nagata, T. & Werner, M.H. Functional mutagenesis of AML1/RUNX1 and PEBP2β/CBFβ define distinct, non-overlapping sites for DNA recognition and heterodimerization by the Runt domain. J. Mol. Biol. 308, 191–203 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Mundlos, S. et al. Mutations involving the transcription factor CBFA1 cause Cleidocranial dysplasia. Cell 89, 773–780 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Zhou, G. et al. CBFA1 mutation analysis and functional correlation with phenotypic variability in cleidocranial dysplasia. Hum. Mol. Genet. 8, 2311–2316 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Motoike, T. et al. Universal GFP reporter for the study of vascular development. Genesis 28, 75–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Rucklidge, G.J., Milne, G. & Robins, S.P. Collagen X: a component of the surface of normal human, pig, and rat articular cartilage. Biochem. Biophys. Res. Comm. 224, 297–302 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Given, G. Ward, M. Kundu, M. de Bruijn, M. Binder, B. Trevant and S. Fiering for their advice and technical assistance, L. Karns for the Tek promoter and enhancer sequences and T. Sato for the Tg(Tek-GFP) mice. This work was supported by US Public Health Service grants to N.A.S., J.B.L. and G.S.S. and supported in part by the Core Grant of the Norris Cotton Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy A. Speck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, J., Horner, A., Stacy, T. et al. The core-binding factor β subunit is required for bone formation and hematopoietic maturation. Nat Genet 32, 645–649 (2002). https://doi.org/10.1038/ng1049

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1049

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing