Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bi-allelic inactivation of TCF1 in hepatic adenomas

Abstract

Liver adenomas are benign tumors at risk of malignant transformation. In a genome-wide search for loss of heterozygosity (LOH) associated with liver adenomas, we found a deletion in chromosome 12q in five of ten adenomas. In most cases, LOH at 12q was the only recurrent genetic alteration observed, suggesting the presence of a tumor-suppressor gene in that region. A minimal common region of deletion was defined in 12q24 that included the gene TCF1 (transcription factor 1), encoding hepatocyte nuclear factor 1 (HNF1; refs 1,2). Heterozygous germline mutations of TCF1 have been identified in individuals affected with maturity-onset diabetes of the young type 3 (MODY3; ref. 3). Bi-allelic inactivation of TCF1 was found in 10 of 16 screened adenomas, and heterozygous germline mutation were present in three affected individuals. Furthermore, 2 well-differentiated hepatocellular carcinomas (HCCs) occurring in normal liver contained somatic bi-allelic mutations of 30 screened HCCs. These results indicate that inactivation of TCF1, whether sporadic or associated with MODY3, is an important genetic event in the occurrence of human liver adenoma, and may be an early step in the development of some HCCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LOH at chromosome 12q in adenomas.
Figure 2: Representative TCF1 sequence variants in adenomas (T) and their matching non-tumor DNA (N).
Figure 3

Similar content being viewed by others

References

  1. Frain, M. et al. The liver-specific transcription factor LF-B1 contains a highly diverged homeobox DNA binding domain. Cell 59, 145–157 (1989).

    Article  CAS  Google Scholar 

  2. Cereghini, S., Yaniv, M. & Cortese, R. Hepatocyte dedifferentiation and extinction is accompanied by a block in the synthesis of mRNA coding for the transcription factor HNF1/LFB1. EMBO J. 9, 2257–2263 (1990).

    Article  CAS  Google Scholar 

  3. Yamagata, K. et al. Mutations in the hepatocyte nuclear factor-1α gene in maturity-onset diabetes of the young (MODY3). Nature 384, 455–458 (1996).

    Article  CAS  Google Scholar 

  4. Edmondson, H.A., Henderson, B. & Benton, B. Liver-cell adenomas associated with use of oral contraceptives. N. Engl. J. Med. 294, 470–472 (1976).

    Article  CAS  Google Scholar 

  5. Sale, G.E. & Lerner, K.G. Multiple tumors after androgen therapy. Arch. Pathol. Lab. Med. 101, 600–603 (1977).

    CAS  PubMed  Google Scholar 

  6. Howell, R.R., Stevenson, R.E., Ben-Menachem, Y., Phyliky, R.L. & Berry, D.H. Hepatic adenomata with type 1 glycogen storage disease. JAMA 236, 1481–1484 (1976).

    Article  CAS  Google Scholar 

  7. Flejou, J.F. et al. Liver adenomatosis. An entity distinct from liver adenoma? Gastroenterology 89, 1132–1138 (1985).

    Article  CAS  Google Scholar 

  8. Chiche, L. et al. Liver adenomatosis: reappraisal, diagnosis, and surgical management: eight new cases and review of the literature. Ann. Surg. 231, 74–81 (2000).

    Article  CAS  Google Scholar 

  9. Goldfarb, S. Sex hormones and hepatic neoplasia. Cancer Res. 36, 2584–2588 (1976).

    CAS  PubMed  Google Scholar 

  10. Ferrell, L.D. Hepatocellular carcinoma arising in a focus of multilobular adenoma. A case report. Am. J. Surg. Pathol. 17, 525–529 (1993).

    Article  CAS  Google Scholar 

  11. Baumhueter, S. et al. HNF-1 shares three sequence motifs with the POU domain proteins and is identical to LF-B1 and APF. Genes Dev. 4, 372–379 (1990).

    Article  CAS  Google Scholar 

  12. Chouard, T. et al. A distal dimerization domain is essential for DNA-binding by the atypical HNF1 homeodomain. Nucleic Acids Res. 18, 5853–5863 (1990).

    Article  CAS  Google Scholar 

  13. Kaisaki, P.J. et al. Mutations in the hepatocyte nuclear factor-1α gene in MODY and early-onset NIDDM: evidence for a mutational hotspot in exon 4. Diabetes 46, 528–535 (1997).

    Article  CAS  Google Scholar 

  14. Tsukuma, H. et al. Risk factors for hepatocellular carcinoma among patients with chronic liver disease. N. Engl. J. Med. 328, 1797–1801 (1993).

    Article  CAS  Google Scholar 

  15. Nicosia, A. et al. A myosin-like dimerization helix and an extra-large homeodomain are essential elements of the tripartite DNA binding structure of LFB1. Cell 61, 1225–1236 (1990).

    Article  CAS  Google Scholar 

  16. Schott, O., Billeter, M., Leiting, B., Wider, G. & Wuthrich, K. The NMR solution structure of the non-classical homeodomain from the rat liver LFB1/HNF1 transcription factor. J. Mol. Biol. 267, 673–683 (1997).

    Article  CAS  Google Scholar 

  17. Vaxillaire, M. et al. Anatomy of a homeoprotein revealed by the analysis of human MODY3 mutations. J. Biol. Chem. 274, 35639–35646 (1999).

    Article  CAS  Google Scholar 

  18. Ellard, S. Hepatocyte nuclear factor 1α (HNF-1α) mutations in maturity-onset diabetes of the young. Hum. Mutat. 16, 377–385 (2000).

    Article  CAS  Google Scholar 

  19. Boland, C.R. et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 58, 5248–5257 (1998).

    CAS  PubMed  Google Scholar 

  20. Yamagata, K. et al. Mutation P291fsinsC in the transcription factor hepatocyte nuclear factor-1α is dominant negative. Diabetes 47, 1231–1235 (1998).

    CAS  PubMed  Google Scholar 

  21. Collet, C. et al. Prevalence of the missense mutation Gly574Ser in the hepatocyte nuclear factor-1α in Africans with diabetes. Diabetes Metab. 28, 39–44 (2002).

    CAS  PubMed  Google Scholar 

  22. Foster, J.H., Donohue, T.A. & Berman, M.M. Familial liver-cell adenomas and diabetes mellitus. N. Engl. J. Med. 299, 239–241 (1978).

    Article  CAS  Google Scholar 

  23. Knudson, A.G. Jr. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA 68, 820–823 (1971).

    Article  Google Scholar 

  24. Comings, D.E. A general theory of carcinogenesis. Proc. Natl Acad. Sci. USA 70, 3324–3328 (1973).

    Article  CAS  Google Scholar 

  25. Pontoglio, M. et al. Hepatocyte nuclear factor 1 inactivation results in hepatic dysfunction, phenylketonuria, and renal Fanconi syndrome. Cell 84, 575–585 (1996).

    Article  CAS  Google Scholar 

  26. Lee, Y.H., Sauer, B. & Gonzalez, F.J. Laron dwarfism and non-insulin-dependent diabetes mellitus in the Hnf-1α knockout mouse. Mol. Cell Biol. 18, 3059–3068 (1998).

    Article  CAS  Google Scholar 

  27. Miller, S.A., Dykes, D.D. & Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16, 1215 (1988).

  28. Laurent-Puig, P. et al. Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology 120, 1763–1773 (2001).

    Article  CAS  Google Scholar 

  29. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Pascoe and H. Blons for helpful discussions and critical reading of the manuscript; P. Legoix, P. Pasturaud, H. Blanché (Centre d'Etude du Polymorphisme Humain, Fondation Jean Dausset), X. Jeunemaître and P. Coudol (Hôpital Européen Georges Pompidou) for providing facilities and technical assistance in sequencing and genotyping; and J. Saric, C. Laurent and A.S. Cunha (Service de chirurgie digestive) for their contribution to the Bordeaux Liver Tumor Database. This work was supported by grants from the Association pour la Recherche sur le Cancer, the Ligue départementale de Lutte Contre le Cancer de la Dordogne and the Inserm. O.B. is the recipient of a fellowship from the Ligue Nationale Contre le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Zucman-Rossi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bluteau, O., Jeannot, E., Bioulac-Sage, P. et al. Bi-allelic inactivation of TCF1 in hepatic adenomas. Nat Genet 32, 312–315 (2002). https://doi.org/10.1038/ng1001

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1001

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing