Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Macular corneal dystrophy type I and type II are caused by distinct mutations in a new sulphotransferase gene

A Correction to this article was published on 01 January 2001

Abstract

Macular corneal dystrophy (MCD; MIM 217800) is an autosomal recessive hereditary disease in which progressive punctate opacities in the cornea result in bilateral loss of vision, eventually necessitating corneal transplantation. MCD is classified into two subtypes, type I and type II, defined by the respective absence and presence of sulphated keratan sulphate in the patient serum, although both types have clinically indistinguishable phenotypes1,2. The gene responsible for MCD type I has been mapped to chromosome 16q22, and that responsible for MCD type II may involve the same locus3,4,5. Here we identify a new carbohydrate sulphotransferase gene (CHST6), encoding an enzyme designated corneal N-acetylglucosamine-6-sulphotransferase (C-GlcNAc6ST), within the critical region of MCD type I. In MCD type I, we identified several mutations that may lead to inactivation of C-GlcNAc6ST within the coding region of CHST6. In MCD type II, we found large deletions and/or replacements caused by homologous recombination in the upstream region of CHST6. In situ hybridization analysis did not detect CHST6 transcripts in corneal epithelium in an MCD type II patient, suggesting that the mutations found in type II lead to loss of cornea-specific expression of CHST6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genomic organization and peptide sequence of CHST6.
Figure 2: Distribution of sulphated keratan sulphate and CHST6 transcripts in human normal and MCD type II corneas.
Figure 3: MCD type I mutations in family E.
Figure 4: DNA rearrangements found in the upstream region of CHST6 in MCD type II patients.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Yang, C.J., SundarRaj, N., Thonar, E.J. & Klintworth, G.K. Immunohistochemical evidence of heterogeneity in macular corneal dystrophy. Am. J. Ophthalmol. 106, 65–71 (1988).

    Article  CAS  Google Scholar 

  2. Edward, D.P. et al. Heterogeneity in macular corneal dystrophy. Arch. Ophthalmol. 106, 1579–1583 (1988).

    Article  CAS  Google Scholar 

  3. Vance, J.M. et al. Linkage of a gene for macular corneal dystrophy to chromosome 16. Am. J. Hum. Genet. 58, 757–762 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Jonasson, F. et al. Macular corneal dystrophy in Iceland. A clinical, genealogic, and immunohistochemical study of 28 patients. Ophthalmology 103, 1111–1117 (1996).

    Article  CAS  Google Scholar 

  5. Liu, N.P. et al. Haplotype analysis in Icelandic families defines a minimal interval for the macular corneal dystrophy type I gene. Am. J. Hum. Genet. 63, 912–917 (1998).

    Article  CAS  Google Scholar 

  6. Nakazawa, K. et al. Defective processing of keratan sulfate in macular corneal dystrophy. J. Biol. Chem. 259, 13751–13757 (1984).

    CAS  PubMed  Google Scholar 

  7. Klintworth, G.K. et al. Macular corneal dystrophy. Lack of keratan sulfate in serum and cornea. Ophthalmic Paediatr. Genet. 7, 139–143 (1986).

    Article  CAS  Google Scholar 

  8. Thonar, E.J. et al. Absence of normal keratan sulfate in the blood of patients with macular corneal dystrophy. Am. J. Ophthalmol. 102, 561–569 (1986).

    Article  CAS  Google Scholar 

  9. Edward, D.P., Thonar, E.J., Srinivasan, M., Yue, B.J. & Tso, M.O. Macular dystrophy of the cornea. A systemic disorder of keratan sulfate metabolism. Ophthalmology 97, 1194–1200 (1990).

    Article  CAS  Google Scholar 

  10. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  11. Lee, J.K., Bhakta, S., Rosen, S.D. & Hemmerich, S. Cloning and characterization of a mammalian N-acetylglucosamine-6-sulfotransferase that is highly restricted to intestinal tissue. Biochem. Biophys. Res. Commun. 263, 543–549 (1999).

    Article  CAS  Google Scholar 

  12. Kakuta, Y., Pedersen, L.G., Pedersen, L.C. & Negishi, M. Conserved structural motifs in the sulfotransferase family. Trends Biochem. Sci. 23, 129–130 (1998).

    Article  CAS  Google Scholar 

  13. Kakuta, Y., Sueyoshi, T., Negishi, M. & Pedersen, L.C. Crystal structure of the sulfotransferase domain of human heparan sulfate N-deacetylase/N-sulfotransferase 1. J. Biol. Chem. 274, 10673–10676 (1999).

    Article  CAS  Google Scholar 

  14. Klintworth, G.K. et al. Macular corneal dystrophy in Saudi Arabia: a study of 56 cases and recognition of a new immunophenotype. Am. J. Ophthalmol. 124, 9–18 (1997).

    Article  CAS  Google Scholar 

  15. Liu, N.P. et al. Coexistence of macular corneal dystrophy types I and II in a single sibship. Br. J. Ophthalmol. 82, 241–244 (1998).

    Article  CAS  Google Scholar 

  16. Thonar, E.J. et al. Quantification of keratan sulfate in blood as a marker of cartilage catabolism. Arthritis Rheum. 28, 1367–1376 (1985).

    Article  CAS  Google Scholar 

  17. Fukuta, M. et al. Molecular cloning and characterization of human keratan sulfate Gal-6-sulfotransferase. J. Biol. Chem. 272, 32321–32328 (1997).

    Article  CAS  Google Scholar 

  18. Uchimura, K. et al. Human N-acetylglucosamine-6-O-sulfotransferase involved in the biosynthesis of 6-sulfo sialyl Lewis X: molecular cloning, chromosomal mapping, and expression in various organs and tumor cells. J. Biochem. (Tokyo) 124, 670–678 (1998).

    Article  CAS  Google Scholar 

  19. Fukuta, M., Kobayashi, Y., Uchimura, K., Kimata, K. & Habuchi, O. Molecular cloning and expression of human chondroitin 6-sulfotransferase. Biochim. Biophys. Acta 1399, 57–61 (1998).

    Article  CAS  Google Scholar 

  20. Bistrup, A. et al. Sulfotransferases of two specificities function in the reconstitution of high endothelial cell ligands for L-selectin. J. Cell Biol. 145, 899–910 (1999).

    Article  CAS  Google Scholar 

  21. Kawakami, M. & Nakayama, J. Enhanced expression of prostate-specific membrane antigen gene in prostate cancer as revealed by in situ hybridization. Cancer Res. 57, 2321–2324 (1997).

    CAS  PubMed  Google Scholar 

  22. Shiozawa, T., Tsukahara, Y., Nakayama, J., Ishii, K. & Katsuyama, T. Immunohistochemical reactivity of antikeratan sulfate monoclonal antibody 5D4 to various conditions of human endometrial tissues and its application as a useful marker for identifying endometrial epithelia. Gynecol. Obstet. Invest. 32, 239–242 (1991).

    Article  CAS  Google Scholar 

  23. Hudson, T.J., Clark, C.D., Gschwend, M. & Justice-Higgins, E. PCR methods of genotyping. in Current Protocols in Human Genetics (eds Dracopoli, N.C. et al.) 2.5.1–2.5.23 (John Wiley & Sons, New York, 1997).

    Google Scholar 

  24. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  25. Kakuta, Y., Pedersen, L.G., Carter, C.W., Negishi, M. & Pedersen, L.C. Crystal structure of estrogen sulphotransferase. Nature Struct. Biol. 4, 904–908 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Hiraoka, R. Aoki, H. Nakagawa, S. Saburi and A. Suzuki for discussions; C. Sotozono for patient DNA samples; M. Onda for normal Japanese samples; and S. Kubota and A. Pai for technical assistance. This work was supported by NIH grant CA71932 (M.N.F.), AG04736 and AR39239 (E.J.-M.A.T.). This work was also supported by Grant-in-Aid for Scientific Research (09671800, 10178104, 10470365) from the Ministry of Education, Science, Sports and Culture of Japan (H.W., J.N. and S.K.)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akira Tanigami or Michiko N. Fukuda.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akama, T., Nishida, K., Nakayama, J. et al. Macular corneal dystrophy type I and type II are caused by distinct mutations in a new sulphotransferase gene. Nat Genet 26, 237–241 (2000). https://doi.org/10.1038/79987

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/79987

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing