Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Secretory phospholipase Pla2g2a confers resistance to intestinal tumorigenesis

Abstract

Individuals inheriting the same mutation predisposing to cancer may show very different outcomes, ranging from early aggressive cancer to disease–free survival. Experimental mouse models can provide a powerful tool to identify factors in the environment and genetic background that account for such modifications. The Min mouse strain1, in which the ApcMin mutation disrupts the mouse homologue of the human familial polyposis gene2, develops intestinal neoplasms whose multiplicity is strongly affected by genetic background3. We previously mapped4,5 a strong modifier locus, Mom1 (modifier of Min–1), to a 4–cM region on mouse chromosome 4 containing a candidate gene Pla2g2a encoding a secretory phospholipase6. Here, we report that a cosmid transgene overexpressing Pla2g2a caused a reduction in tumour multiplicity and size, comparable to that conferred by a single copy of the resistance allele of Mom1. These results offer strong evidence that this secretory phospholipase can provide active tumour resistance. The association of Pla2g2a with Mom1 thus withstands a strong functional test and is likely to represent the successful identification of a polymorphic quantitative trait locus in mammals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Moser, A.R., Pitot, H.C. & Dove, W.F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247, 322–324 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Su, L.-K. et al. A germline mutation of the murine homolog of the APC gene causes multiple intestinal neoplasia. Science 256, 668–670 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Shoemaker, A.R., Gould, K.A., Luongo, C., Moser, A.R. & Dove, W.F. Studies of neoplasia in the Min mouse. Biochim. Biophys. Acta Rev. Cancer 1332, F25–F48 (1997).

    Article  CAS  Google Scholar 

  4. Dietrich, W. et al. Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell 75, 631–639 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Gould, K.A. et al. Genetic evaluation of candidate genes for the Moml modifier of intestinal neoplasia in mice. Genetics 144, 1777–1785 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. MacPhee, M. et al. The secretory phospholipase A2 gene is a candidate for the Mom1 locus, a major modifier of ApcMin-induced intestinal neoplasia. Cell 81, 957–966 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Gould, K.A., Dietrich, W.F., Borenstein, N., Lander, E.S. & Dove, W.F. Mom1 is a semi-dominant modifier of the size and multiplicity of intestinal adenomas in Min mice. Genetics 144, 1769–1776 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gould, K.A. & Dove, W.F. Action of Min and Mom1 on neoplasia in ectopic intestinal grafts. Cell Growth Diff. 7, 1361–1368 (1996).

    CAS  PubMed  Google Scholar 

  9. Gould, K.A. & Dove, W.F. Localized action controlling intestinal neoplasia in mice. Proc. Natl. Acad. Sci. USA 94, 5848–5853 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tischfield, J.A. et al. Low-molecular-weight, calcium-dependent phospholipase A2 genes are linked and map to homologous chromosome regions in mouse and human. Genomics 32, 328–333 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Peeters, T. & Vantrappen, G. The paneth cell: a source of intestinal lysozyme. Gut 16, 553–558 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rhodin, J.A.G. Histology: A Text and Atlas (Oxford University, New York, 1974).

    Google Scholar 

  13. Oshima, M. et al. Suppression of intestinal polyposis in ApcÆ716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87, 803–809 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Reddy, S.T. & Herschman, H.R. Prostaglandin synthase-1 and prostaglandin synthase-2 are coupled to distinct phospholipases for the generation of prostaglandin D2 in activated mast cells. J. Biol. Chem. 272, 3231–3236 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Harwig, S.S.L. et al. Bactericidal properties of murine intestinal phospholipase A2 . J. Clin. Invest. 95, 603–610 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dove, W.F. et al. Intestinal neoplasia in theApcMin mouse: independence from the microbial and natural killer (beige locus) status. Cancer Res. 57, 812–814 (1997).

    CAS  PubMed  Google Scholar 

  17. Dudley, M.E., Sundberg, J.P. & Roopenian, D.C. Frequency and histological appearance of adenomas in multiple intestinal neoplasia mice are unaffected by severe combined immunodeficiency (scid) mice. Int. J. Cancer 65, 249–253 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Tomlinson, I.P., Beck, N.E., Neale, K. & Bodmer, W.F. Variants at the secretory phospholipase A2 (PLA2G2a) locus: analysis of associations with familial adenomatous polyposis and sporadic colorectal tumors. Ann. Hum. Genet 60, 369–376 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Spirio, L.N. et al. Three secretory phospholipase A2 genes that map to human chromosome 1P35-36 are not mutated in individuals with attenuated adenomatous polyposis coli. Cancer Res. 56, 955–958 (1996).

    CAS  PubMed  Google Scholar 

  20. Lander, E.S. & Botstein, D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hamilton, B.A. et al. The vibrator mutation causes neurodegeneration via reduced expression of PITPα: positional complementation cloning and extragenic suppression. Neuron 18, 711–722 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. King, D.P. et al. Positional cloning of the mouse circadian clock gene. Cell 89, 641–653 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dove, W.F. Molecular genetics of Mus musculus: point mutations and millimorgans. Genetics 116, 5–8 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Altshul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic alignment search tool. J. Mol. Biol. 215, 403–410 (1996).

    Article  Google Scholar 

  25. Sambrook, J., Fritsch, E.F. & Maniatis, T., Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989).

    Google Scholar 

  26. Halberg, R. & Kroos, L. Fate of the SpoIIID switch protein during Bacillus subtilis sporulation depends on mother-cell sigma factor, σk . J. Mol. Biol. 228, 840–849 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Wagle, A., Desai, S. & Deo, M.G. Immunohistochemical localization of ‘enhancing factor’, a novel growth modulator in the mouse intestines. Cell Biol. Int. Rep. 13, 309–312 (1989).

    Article  CAS  PubMed  Google Scholar 

  28. Mulherkar, R. et al. Enhancing factor protein from mouse small intestines belongs to the phospholipase A2 family. FEBS Lett. 317, 263–266 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Mulherkar, R., Desai, S.J., Rao, R.S., Wagle, A.S. & Deo, M.G. Expression of enhancing factor gene and its localization in mouse tissues. Histochemistry 96, 367–370 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cormier, R., Hong, K., Halberg, R. et al. Secretory phospholipase Pla2g2a confers resistance to intestinal tumorigenesis. Nat Genet 17, 88–91 (1997). https://doi.org/10.1038/ng0997-88

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0997-88

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing