Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas

Abstract

Basal cell carcinoma (BCC) is the most common cancer in humans1. The majority of sporadic BCCs have allelic loss on chromosome 9q22 implying that inactivation of a tumour suppressor in this region is an important step in BCC formation2–5. The gene for nevoid basal cell carcinoma syndrome (NBCCS), an autosomal dominant disorder characterized by multiple BCCs, maps to the same region and is presumed to be the tumour suppressor inactivated at this site2,6,7. NBCCS has been identified recently and encodes a protein with strong homology to the Drosophila segment polarity gene, patched8–10. Analysis of Drosophila mutants indicates that patched interacts with the hedgehog signalling pathway, repressing the expression of various hedgehog target genes including wingless, decapentaplegic and patched itself11–15. Using single strand conformational polymorphism (SSCP) to screen human patched in 37 sporadic BCCs, we detected mutations in one-third of the tumours. Direct sequencing of two BCCs without SSCP variants revealed mutations in those tumours as well suggesting that inactivation of patched is probably a necessary step in BCC development. Northern blots and RNA in situ hybridization showed that patched is expressed at high levels in tumour cells but not normal skin suggesting that mutational inactivation of the gene leads to overexpression of mutant transcript owing to failure of a negative feedback mechanism.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Miller, S.J. Biology of basal cell carcinoma (Part I). J. Am. Acad. Dematol. 24, 1–13 (1991).

    Article  CAS  Google Scholar 

  2. Gailani, M.R. et al. Developmental defects in Gorlin syndrome related to a putative tumor suppressor gene on chromosome 9. Cell 69, 111–117 (1992).

    Article  CAS  Google Scholar 

  3. Chenevix-Trench, G. et al. Further localization of the gene for nevoid basal cell carcinoma syndrome (NBCCS) in 15 Australasian families: linkage and loss of heterozygosity. Am. J. Hum. Genet. 53, 760–767 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Shanley, S.M. et al. Fine deletion mapping on the long arm of chromosome 9 in sporadic and familial basal cell carcinomas. Hum. Mol. Genet. 4, 129–133 (1995).

    Article  CAS  Google Scholar 

  5. Holmberg, E., Lundh-Rozell, B. & Toftgard, R. Differential allele loss on chromosome 9q22. 3 in human non-melanoma skin cancer. Br. J. Cancer (in the press).

  6. Farndon, P.A., Del Mastro, R.G., Evans, D.G., Kilpatrick, M.W. Location of gene for Gorlin syndrome. Lancet 339, 581–582 (1992).

    Article  CAS  Google Scholar 

  7. Reis, A. et al. Localisation of gene for the naevoid basal-cell carcinoma syndrome. Lancet 339, 617 (1992).

    Article  CAS  Google Scholar 

  8. Hahn, H. et al. A mammalian patched homolog is expressed in target tissues of sonic hedgehog and maps to a region associated with developmental abnormalities. J. Biol. Chem. 271, 12125–12128 (1996).

    Article  CAS  Google Scholar 

  9. Hahn, H. et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85, 841–851 (1996).

    Article  CAS  Google Scholar 

  10. Johnson, R.L. et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272, 1668–1671 (1996).

    Article  CAS  Google Scholar 

  11. Ingham, P.W. & Hidalgo, A. Regulation of wingless transcription in the Drosophila embryo. Development 117, 283–291 (1993).

    CAS  Google Scholar 

  12. Capdevila, J., Estrada, M.P., Sanchez-Herrero, E. & Guerrero, I. The Drosophila segment polarity gene patched interacts with decapentaplegic in wing development. EMBO J. 13, 71–82 (1994).

    Article  CAS  Google Scholar 

  13. Ingham, P.W., Taylor, A.M. & Nakano, Y. Role of the Drosophila patched gene in positional signalling. Nature 353, 184–187 (1991).

    Article  CAS  Google Scholar 

  14. Tabata, T. & Kornberg, T.B. Hedgehog is a signaling protein with a key role in patterning Drosophila imaginal discs. Cell 76, 89–102 (1994).

    Article  CAS  Google Scholar 

  15. Basler, K. & Struhl, G. Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature 368, 208–214 (1994).

    Article  CAS  Google Scholar 

  16. Hooper, J.E. & Scott, M.P., Drosophila patched gene encodes a putative membrane protein required for segmental patterning. Cell 59, 751–765 (1989).

    Article  CAS  Google Scholar 

  17. Nakano, Y. et al. A protein with several possible membrane-spanning domains encoded by the Drosophila segment polarity gene patched . Nature 341, 508–513 (1989).

    Article  CAS  Google Scholar 

  18. Weinberg, R.A. The molecular basis of oncogenes and tumor suppressor genes. Ann. N. Y. Acad. Sci. 758, 331–338 (1995).

    Article  CAS  Google Scholar 

  19. Scotto, J. & Fraumeni, J.F. Jr., Skin (other than melanoma). in Cancer epidemiology and prevention, (eds Schottenfeld D. & Fraumeni, J.F.Jr.) 996–1011. (Saunders, Philadelphia, 1982).

    Google Scholar 

  20. Brash, D.E. et al. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc. Natl. Acad. Sci. USA 88, 10124–10128 (1991).

    Article  CAS  Google Scholar 

  21. Hutchinson, F. Induction of tandem-base change mutations. Mutat. Res. 309, 11–15 (1994).

    Article  CAS  Google Scholar 

  22. Fearon, E.R. et al. Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 247, 49–56 (1990).

    Article  CAS  Google Scholar 

  23. Su, L.K., Vogelstein, B. & Kinzler, K.W. Association of the ARC tumor suppressor protein with catenins. Science 262, 1734–1737 (1993).

    Article  CAS  Google Scholar 

  24. Rubinfeld, B. et al. Association of the APC gene product with beta-catenin. Science 262, 1731–1734 (1993).

    Article  CAS  Google Scholar 

  25. Trofatter, J.A. et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 72, 791–800 (1993).

    Article  CAS  Google Scholar 

  26. Capdevila, J., Pariente, F., Sampedro, J., Alonso, J.L. & Guerrero, I. Subcellular localization of the segment polarity protein patched suggests an interaction with the wingless reception complex in Drosophila embryos. Development 120, 987–998 (1994).

    CAS  PubMed  Google Scholar 

  27. Sambrook, J., Fritsch, E.F., Maniatis, T. Molecular Cloning: A laboratory manual. 2nd edn. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989).

    Google Scholar 

  28. Baskaran, N. et al. Uniform amplification of a mixture of deoxyribonucleic acids with varying GC content. Genome Res. (in the press).

  29. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analyt. Biochem. 162, 156–159 (1987).

    Article  CAS  Google Scholar 

  30. Stahle-Baokdahl, M., Sudbeck, B.D., Eisen, A.Z., Welgus, H.G. & Parks, W.C. Expression of 92-kDa type IV collagenase mRNA by eosinophils associated with basal cell carcinoma. J. Invest. Dermatol. 99, 497–503 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gailani, M., Ståhle-Bäckdahl, M., Leffell, D. et al. The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat Genet 14, 78–81 (1996). https://doi.org/10.1038/ng0996-78

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0996-78

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing