Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutation of MSH3 in endometrial cancer and evidence for its functional role in heteroduplex repair

Abstract

Many human tumours have length alterations in repetitive sequence elements1. Although this microsatellite instability has been attributed to mutations in four DNA mismatch repair genes in hereditary nonpolyposis colorectal cancer (HNPCC) kindreds2,3, many sporadic tumours exhibit instability but no detectable mutations in these genes4–6. It is therefore of interest to identify other genes that contribute to this instability. In yeast, mutations in several genes, including RTH and MSH3, cause microsatellite instability7–11. Thus, we screened 16 endometrial carcinomas with microsatellite instability for alterations in FEN1 (the human homolog of RTH) and in MSH3 (refs 12–14). Although we found no FEN1 mutations, a frameshift mutation in MSH3 was observed in an endometrial carcinoma and in an endometrial carcinoma cell line. Extracts of the cell line were deficient in repair of DNA substrates containing mismatches or extra nucleotides. Introducing chromosome 5, encoding the MSH3 gene, into the mutant cell line increased the stability of some but not all microsatellites. Extracts of these cells repaired certain substrates containing extra nucleotides, but were deficient in repair of those containing mismatches or other extra nucleotides. A subsequent search revealed a second gene mutation in HHUA cells, a missense mutation in the MSH6 gene. Together the data suggest that the MSH3 gene encodes a product that functions in repair of some but not all pre-mutational intermediates, its mutation in tumours can result in genomic instability and, as in yeast, MSH3 and MSH6 are partially redundant for mismatch repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Eschelman, J.R. & Markowitz, S.D. Microsatellite instability in inherited and sporadic neoplasms. Current Opin. Oncol. 7, 83–89 (1995).

    Article  Google Scholar 

  2. Rhyu, M. Mechanisms underlying hereditary nonpolyposis colorectal carcinoma. J. Natl. Cancer Inst. 88, 240–251 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Kolodner, R. Biochemistry and genetics of eukaryotic mismatch repair. Genes & Dev., in press (1996).

  4. Liu, B. et al. Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability. Nature Genet. 9, 48–55 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Borresen, A.-L. et al. Somatic mutations in the hMSH2 gene in microsatellite unstable colorectal carcinomas. Hum. Mol. Genet. 4, 2065–2072 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Katabuchi, H. et al. Mutations in DNA mismatch repair genes are not responsible for microsatellite instability in most sporadic endometrial carcinomas. Cancer Res. 55, 5556–5559 (1995).

    CAS  PubMed  Google Scholar 

  7. Strand, M., Prolla, T.A., Liskay, R.M. & Petes, T.D. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365, 274–276 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Strand, M., Earley, M.C., Crouse, G.F. & Petes, T.D. Mutations in the MSH3 gene preferentially lead to deletions within tracts of simple repetitive DNA in Saccharomyces cerevisiae . Proc. Natl. Acad. Sci. USA 92, 10418–10421 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Johnson, R.E., Kovvali, G.K., Prakash, L. & Prakash, S. Requirement of the yeast RTH1 5′ to 3′ exonuclease for the stability of simple repetitive DNA. Science 269, 238–240 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Marsischky, G.T., Filosi, N., Kane, M.F. & Kolodner, R. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev 10, 407–420 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Johnson, R.E., Kovvali, G.K., Prakash, L. & Prakash, S. Requirement of the yeast MSH3 and MSH6 genes for MSH2-dependent genomic stability. J. Biol. Chem. 271, 7285–7288 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Hiroaka, L.R., Harrington, J.J., Gerhard, D.S., Lieber, M.R. & Hsieh, C.L. Sequence of human FEN-1, a structure-specific endonuclease, and chromosomal localization of the gene in mouse and human. Genomics 25, 220–225 (1995).

    Article  Google Scholar 

  13. Fujii, H. & Shimada, T. Isolation and characterization of cDNA clones derived from the divergently transcribed gene in the region upstream from the dihydrofolatereductasegene. J. Biol. Chem. 264, 10057–10064 (1989).

    CAS  PubMed  Google Scholar 

  14. Watanabe, A., Ikejima, M., Suzuki, N. & Shimada, T. Genomic organization and expression of the human MSH3 gene. Genomics 31, 311–318 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Modrich, P. Mechanisms and biological effects of mismatch repair. Annu. Rev. Genet. 25, 229–253 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Iaccarino, I. et al. MSH6, a Saccharomyces cerevisiae protein that binds to mismatches as a heterodimer with MSH2. Curr. Biol. 6, 484–487.

    Article  CAS  PubMed  Google Scholar 

  17. Papadopoulos, N. et al. Mutations of GTBP in genetically unstable cells. Science 268, 1915–1917 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. New, L., Liu, K. & Crouse, G.F. The yeast gene MSH3 defines a new class of eukaryotic MutS homologues. Mol. Gen. Genet. 239, 97–108 (1993).

    CAS  PubMed  Google Scholar 

  19. Koi, M. et al. Normal human chromosome 11 suppresses tumorigenicity of human cervical tumor cell line SiHa. Mol. Carcinogenesis 2, 12–21 (1989).

    Article  CAS  Google Scholar 

  20. Koi, M. et al. Human chromosome 3 corrects mismatch repair deficiency and microsatellite instability and reduces N-Methyl'-N-nitrosoguanidine tolerance in colon tumor cells with homozygous hMLH1 mutation. Cancer Res. 54, 4308–4312 (1994).

    CAS  PubMed  Google Scholar 

  21. Umar, A. et al. Defective mismatch repair in colorectal and endometrial cancer cell lines exhibiting microsatellite instability. J. Biol. Chem. 269, 14367–14370 (1994).

    CAS  PubMed  Google Scholar 

  22. Risinger, J.I., Umar, A., Barrett, J.C. & Kunkel, T.A. AhPMS2 mutant cell line is defective in strand-specific mismatch repair. J. Biol. Chem. 270, 18183–18186 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Shibata, D., Peinado, M.A., Ionov, S., Malkhosyan, S. & Perucho, M. Genomic instability in repeated sequences in an early somatic event in colorectal tumorigenesis that persists after transformation. Nature Genet. 6, 273–281 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Umar, A. & Kunkel, T.A. DNA replication fidelity, mismatch repair and genome instability in cancer cells. Eur. J. Biochem. 238, 297–307 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Modrich, R. & Lahue, R. Mismatch repair in replication fidelity, genetic recombination and cancer biology. Annu. Rev. Biochem. 65, 101–133 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Palombo, F. et al. GTBP, a 160 kD protein essential for mismatch binding activity in human cells. Science 268, 1912–1914 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Drummond, J.T., Li, G.-M., Longley, M.J. & Modrich, P. Mismatch recognition by an hMSH2-GTBP heterodimer and differential repair defects in tumor cells. Science 268, 1909–1912 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Kat, A. et al. An alkylation-tolerant, mutator human cell line is deficient in strand specific mismatch repair. Proc. Natl. Acad. Sci. USA 90, 6424–6428 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hawn, M.T. et al. Evidence for a connection between the mismatch repair system and the G2 cell cycle checkpoint. Cancer Res. 55, 3721–3725 (1995).

    CAS  PubMed  Google Scholar 

  30. Baker, S.M. et al. Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosomal synapsis in meiosis. Cell 82, 309–320 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Mellon, I. et al. Transcription-coupled repair deficiency and mutations in human mismatch repair genes. Science 272, 557–560 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Risinger, J.I. et al. Microsatellite instability in gynecological sarcomas and in hMSH2 mutant uterine sarcoma cell lines defective in mismatch repair activity. Cancer. Res. 55, 5664–5669 (1995).

    CAS  PubMed  Google Scholar 

  33. Risinger, J.I. et al. Genetic instability of microsatellites in endometrial carcinoma. Cancer Res. 53, 5100–5103 (1993).

    CAS  PubMed  Google Scholar 

  34. Genome Database,The human genome data base project. Baltimore: Johns Hopkins University. World wide web, http://gdbwww. gdb. org/gdb/ browser/docs/topq. html. (1995).

  35. Liu, B. et al. Genetic instability occurs in the majority of young patients with colorectal cancer. Nature Med. 1, 348–352 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Chomcyznski, P. & Sacchi, N. Single step method of RNA isolation by guanidium thiocyanate-phenol-chloroform extraction. Analyt. Biochem. 162, 156–159 (1987).

    Google Scholar 

  37. Liu, B. et al. hMSH2 mutations in hereditary nonpolyposis colorectal cancer kindreds. Cancer Res. 54, 4590–4594 (1994).

    CAS  PubMed  Google Scholar 

  38. Nicolaides, N.C. et al. Molecular cloning of the N-terminus of GTBP . Genomics 31, 395–397.

  39. Thomas, D.C., Umar, A. & Kunkel, T.A. Measurement of heteroduplex repair in human cell extracts. in METHODS: A Companion to Methods In Enzymotogy 7 (ed. Friedberg, E.G.) 187–197 (Academic Press, 1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Kunkel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Risinger, J., Umar, A., Boyd, J. et al. Mutation of MSH3 in endometrial cancer and evidence for its functional role in heteroduplex repair. Nat Genet 14, 102–105 (1996). https://doi.org/10.1038/ng0996-102

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0996-102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing