Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutations in a plasma membrane Ca2+-ATPase gene cause deafness in deafwaddler mice

Abstract

Hearing loss is the most common sensory deficit in humans. Because the auditory systems of mice and humans are conserved, studies on mouse models have predicted several human deafness genes and identified new genes involved in hearing1,2. The deafwaddler (dfw) mouse mutant is deaf and displays vestibular/motor imbalance. Here we report that the gene encoding a plasma membrane Ca2+-ATPase type 2 pump (Atp2b2 , also known as Pmca2) is mutated in dfw. An A→G nucleotide transition in dfw DNA causes a glycine-to-serine substitution at a highly conserved amino-acid position, whereas in a second allele, dfw2J, a 2-base-pair deletion causes a frameshift that predicts a truncated protein. In the cochlea, the protein Atp2b2 is localized to stereocilia and the basolateral wall of hair cells in wild-type mice, but is not detected in dfw2J mice. This indicates that mutation of Atp2b2 may cause deafness and imbalance by affecting sensory transduction in stereocilia3 as well as neurotransmitter release from the basolateral membrane4. These mutations affecting Atp2b2 in dfw and dfw2J are the first to be found in a mammalian plasma membrane calcium pump and define a new class of deafness genes that directly affect hair-cell physiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic and physical maps of the dfw region.
Figure 2: Atp2b2 is mutated in dfw and dfw2J mice.
Figure 3: Northern-blot analyses of Atp2b2.
Figure 4: Immunocytochemistry with anti-Atp2b monoclonal antibody 5F10 in the organ of Corti (a,b,c,d,e) and vestibular system (f,g,h,i).

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Steel, K.P. & Brown, S.D.M. Genetics of deafness. Curr. Opin. Neurobiol. 6, 520–525 (1996).

    Article  CAS  Google Scholar 

  2. Petit, C. Genes responsible for human hereditary deafness: symphony of a thousand. Nature Genet. 14, 385–391 ( 1996).

    Article  CAS  Google Scholar 

  3. Yamoah, E.N. et al. Plasma membrane Ca2+-ATPase extrudes Ca2+ from hair cell stereocilia. J. Neurosci. 18, 610–624 (1998).

    Article  CAS  Google Scholar 

  4. Tucker, T. & Fettiplace, R. Confocal imaging of calcium microdomains and calcium extrusion in turtle hair cells. Neuron 15, 1323–1335 (1995).

    Article  CAS  Google Scholar 

  5. Lane, P.W. New mutants and linkages: deafwaddler (dfw). Mouse News Lett. 77, 129 (1987).

    Google Scholar 

  6. Street, V.A., Robinson, L.C., Erford, S.K. & Tempel, B.L. Molecular genetic analysis of distal mouse chromosome 6 defines gene order and positions of the deafwaddler and opisthotonos mutations. Genomics 29, 123–130 (1995).

    Article  CAS  Google Scholar 

  7. McKee-Johnson, J.W., Street, V.A., Erford, S.K., Robinson, L.C. & Tempel, B.L. Physical and genetic maps of the deafwaddler region on distal mouse chromosome six. Genomics 49, 371–377 (1998).

    Article  CAS  Google Scholar 

  8. Noben-Trauth, K., Zheng, Q.Y., Johnson, K.R. & Nishina, P.M. mdfw: a deafness susceptibility locus that interacts with deafwaddler (dfw) . Genomics 44, 266–272 (1997).

    Article  CAS  Google Scholar 

  9. Gao, J. et al. Cloning and characterization of a mouse gene with homology to the human von Hippel-Lindau disease tumor suppressor gene: implications for the potential organization of the human von Hippel-Lindau disease gene. Cancer Res. 55, 743–747 (1995).

    CAS  PubMed  Google Scholar 

  10. Kuzmin, I. et al. One-megabase yeast artificial chromosome and 400-kilobase cosmid-phage contigs containing the von Hippel-Lindau tumor suppressor and Ca2+-transporting adenosine triphosphate isoform 2 genes. Cancer Res. 54, 2486–2491 (1994).

    CAS  PubMed  Google Scholar 

  11. Carafoli, E. & Stauffer, T. The plasma membrane calcium pump: Functional domains, regulation of the activity, and tissue specificity of isoform expression. J. Neurobiol. 25, 312 –324 (1994).

    Article  CAS  Google Scholar 

  12. Stahl, W.L. et al. Plasma membrane Ca2+-ATPase isoforms: distribution of mRNAs in rat brain by in situ hybridization. Molec. Brain Res. 16, 222–231 (1992).

    Article  Google Scholar 

  13. Crouch, J.J. & Schulte, B.A. Expression of plasma membrane Ca-ATPase in the adult and developing gerbil cochlea. Hear. Res. 92, 112–119 ( 1995).

    Article  CAS  Google Scholar 

  14. Crouch, J.J. & Schulte, B.A. Identification and cloning of site C splice variants of plasma membrane Ca-ATPase in the gerbil cochlea . Hear. Res. 101, 55–61 (1996).

    Article  CAS  Google Scholar 

  15. Andersen, J.P., Vilsen, B., Leberer, E. & MacLennan, D.H. Functional consequences of mutations in the ÿ-strand sector of the Ca2+-ATPase of sarcoplasmic reticulum. J. Biol. Chem. 264, 21018–21023 (1989).

    CAS  PubMed  Google Scholar 

  16. Ghislain, M., Schlesser, A. & Goffeau, A. Mutation of a conserved glycine residue modifies the vanadate sensitivity of the plasma membrane H+-ATPase from Schizosaccharomyces pombe. J. Biol. Chem. 262, 17549–17555 (1987).

    CAS  PubMed  Google Scholar 

  17. Apicella, S. et al. Plasmalemmal ATPase calcium pump localizes to inner and outer hair bundles . Neurosci. 79, 1145–1151 (1997).

    Article  CAS  Google Scholar 

  18. Denk, W., Holt, J.R., Shepherd, G.M.G. & Corey, D.P. Calcium imaging of single stereocilia in hair cells: localization of transduction channels at both ends of tip links. Neuron 15, 1311 –1321 (1995).

    Article  CAS  Google Scholar 

  19. Lumpkin, E.A., Marquis, R.E. & Hudspeth, A.J. The selectivity of the hair cell's mechanoelectrical-transduction channel promotes Ca2+ flux at low Ca2+ concentrations . Proc. Natl Acad. Sci. USA 94, 10997– 11002 (1997).

    Article  CAS  Google Scholar 

  20. Eatock, R.A., Corey, D.P. & Hudspeth, A.J. Adaptation of mechanoelectrical transduction in hair cells of the bullfrog's sacculus. J. Neurosci. 7, 2821–2836 (1987).

    Article  CAS  Google Scholar 

  21. Norton, S.J., Tempel, B.L., Steel, K.P. & Rubel, E.W. Physiological and anatomical status of the deafwaddler (dfw) mutant mouse cochlea. Assoc. Res. Oto. Abstr. 19, 82 ( 1996).

    Google Scholar 

  22. McKee-Johnson, J. & Reeves, R.H. Fragmentation and integrative modification of yeast artificial chromosomes. in Protocols for Yeast Artificial Chromosomes . Methods in Molecular Biology (ed. Markie, D.) 167 –186 (Humana Press Inc., Totowa, 1996 ).

  23. Noben-Trauth, K., Naggert, J.K., North, M.A. & Nishina, P.M. A candidate gene for the mouse mutation tubby. Nature 380, 534–538 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Rubel, S. Sullivan and D. Wu for comments; and D. Cunningham, N. M. del Puerto and L. Robinson for expert technical assistance. This work was supported by grants from the NIH and the NIDCD Division of Intramural Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce L. Tempel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Street, V., McKee-Johnson, J., Fonseca, R. et al. Mutations in a plasma membrane Ca2+-ATPase gene cause deafness in deafwaddler mice. Nat Genet 19, 390–394 (1998). https://doi.org/10.1038/1284

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/1284

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing