Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Trinucleotide repeat expansion at the myotonic dystrophy locus reduces expression of DMAHP

Abstract

Myotonic dystrophy, or dystrophia myotonica (DM), is an autosomal dominant multisystem disorder caused by the expansion of a CTG trinucleotide repeat in the 3′ untranslated region of the DMPK protein kinase gene on chromosome 19q13.3 (refs 1–3). Although the DM mutation was identified more than five years ago, the pathogenic mechanisms underlying this most prevalent form of hereditary adult neuromuscular disease remain elusive4. Previous work from our laboratory demonstrated that a DNase I–hypersensitive site located adjacent to the repeats on the wild-type allele is eliminated by repeat expansion5, indicating that large CTG-repeat arrays may be associated with a local chromatin environment that represses gene expression. Here we report that the hypersensitive site contains an enhancer element that regulates transcription of the adjacent DMAHP6 homeobox gene. Analysis of DMAHP expression in the cells of DM patients with loss of the hypersensitive site revealed a two- to fourfold reduction in steady-state DMAHP transcript levels relative to wild-type controls. Allele-specific analysis of DMAHP expression showed that steady-state transcript levels from the expanded allele were greatly reduced in comparison to those from the wild-type allele. Together, these results demonstrate that CTG-repeat expansions can suppress local gene expression and implicate DMAHP in DM pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brook, J.D. et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68, 799–808 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Fu, Y.H. et al. An unstable triplet repeat in a gene related to myotonic dystrophy. Science 255, 1256–1258 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Mahadevan, M. et al. Myotonic dystrophy: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255, 1253–1255 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Harris, S., Moncrieff, C. & Johnson, K. Myotonic dystrophy: will the real gene please step forward! . Hum Mol. Genet. 5, 1417–1423 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Otten, A.D. & Tapscott, S.J. Triplet repeat expansion in myotonic dystrophy alters the adjacent chromatin structure. Proc. Natl. Acad. Sci. USA 92, 5465–5469 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boucher, C.A. et al. A novel homeodomain-encoding gene is associated with a large CpG island interrupted by the myotonic dystrophy unstable (CTG)n repeat. Hum. Mol. Genet. 4, 1919–1925 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Weintraub, H. et al. Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc. Natl. Acad. Sci. USA 86, 5434–5438 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hollenberg, S.M., Cheng, P.F. & Weintraub, H. Use of a conditional MyoD transcription factor in studies of MyoD trans-activation and muscle determination. Proc. Natl. Acad. Sci. USA 90, 8028–8032 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Azizkhan, J.C., Jensen, D.E., Pierce, A.J. & Wade, M. Transcription from TATA-less promoters: dihydrofolate reductase as a model. CRC Crit. Rev. Eukaryotic Gene Expression 3, 229–254 (1993).

    CAS  Google Scholar 

  10. Thornton, C.A., Wymer, J.P. & Moxley, R.T. 1996 Annual Meeting, the American Society of Human Genetics (abstract), in Am. J. Hum. Genet. 59 (Suppl.), A33 (1996).

    Google Scholar 

  11. Wang, Y., Amirhaeri, S., Kang, S., Wells, R.D. & Griffith, J.D. Preferential assembly at DNA triplet repeats from the myotonic dystrophy gene. Science 265, 669–671 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, Y. & Griffith, J. Expanded CTG triplet blocks from the myotonic dystrophy gene create the strongest known natural nucleosome positioning elements. Genomics 25, 570–573 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Godde, J.S. & Wolffe, A.P. Nucleosome assembly on CTG repeats. J. Biol. Chem. 271, 15222–15229 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Krahe, R. et al. Effect of myotonic dystrophy trinucleotide repeat expansion on DMPK transcription and processing. Genomics 28, 1–14 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Jansen, G. et al. Abnormal myotonic dystrophy protein kinase levels produce only mild myopathy in mice. Nature Genet. 13, 316–324 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Reddy, S. et al. Mice lacking the myotonic dystrophy protein kinase develop a lateonset progressive myopathy. Nature Genet. 13, 325–335 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Kawakami, K., Ohto, H., Takizawa, T. & Saito, T. Identification and expression of six family genes in mouse retina. FEBSLett. 393, 259–263 (1996).

    Article  CAS  Google Scholar 

  18. Kawakami, K., Ohto, H., Ikeda, K. & Roeder, R.G., Structure, function and expression of a murine homeobox protein AREC3, a homologue of Drosophila sine oculis gene product, and implication in development. Nucleic Acids Res. 24, 303–310 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miller, A.D. & Rosman, G.J. Improved retroviral vectors for gene transfer and expression. Biotechniques 7, 980–988 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Miller, A.D., Miller, D.G., Garcia, J.V. & Lynch, C.M. Use of retroviral vectors for gene transfer and expression. Methods Enzymol. 217, 581–599 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Tapscott, S.J., Thayer, M.J. & Weintraub, H. Rhabdomyosarcomas lack a factor necessary for both transcriptional activation by MyoD and myogenesis. Science 259, 1450–1453 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Brasier, A.R. Reporter system using firefly luciferase: in Current Protocols in Molecular Biology (eds Ansubel, F.M. et al. 9.6.10–9.6.14 (John Wiley & Sons, New York, 1989).

    Google Scholar 

  23. Walters, M.C. et al. Enhancers increase the probability but not the level of gene expression. Proc. Natl. Acad. Sci. USA 92, 7125–7129 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Auffray, C. & Rougeon, F. Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur. J. Biochem. 107, 303–314 (1980).

    Article  CAS  PubMed  Google Scholar 

  25. Gilman, M. Ribonuclease protection assay: in Current Protocols in Molecular Biology (eds Ansubel, F.M. et al.) 4.7.1–4.7.8 (John Wiley & Sons, New York, 1993).

    Google Scholar 

  26. Carango, P., Noble, J.E., Marks, H.G. & Funanage, V.L. Absence of myotonic dystrophy protein kinase (DMPK) mRNA as a result of triplet repeat expansion in myotonic dystrophy. Genomics 18, 340–348 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Fu, Y.-H. et al. Decreased expression of myotonin-protein kinase messenger RNA and protein in adult form of myotonic dystrophy. Science 260, 235–238 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Novelli, G. et al. Failure in detecting mRNA transcripts from the mutated allele in myotonic dystrophy muscle. Biochem. Mol. Biol. Int. 29, 291–297 (1993).

    CAS  PubMed  Google Scholar 

  29. Hofmann-Radvanyi, H. et al. Myotonic dystrophy: absence of CTG enlarged transcript in congenital forms, and low expression of the normal allele. Hum. Mol. Genet. 2, 1263–1266 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Sabouri, L.A. et al. Effect of the myotonic dystrophy (DM) mutation on mRNA levels of the DM gene. Nature Genet 4, 233–238 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Bhagwati, S., Ghatpande, A. & Leung, B. Normal levels of DM RNA and myotonin protein kinase in skeletal muscle from adult myotonic dystrophy (DM) patients. Biochim. Biophys. Acta 1317, 155–157 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Tapscott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klesert, T., Otten, A., Bird, T. et al. Trinucleotide repeat expansion at the myotonic dystrophy locus reduces expression of DMAHP. Nat Genet 16, 402–406 (1997). https://doi.org/10.1038/ng0897-402

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0897-402

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing