Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Diamond-Blackfan anaemia: genetic homogeneity for a gene on chromosome 19q13 restricted to 1.8 Mb

Abstract

Diamond-Blackfan anaemia (DBA; MIM♯205900) is a rare disorder manifested as a pure red-cell aplasia in the neonatal period or in infancy1–3. The clinical hallmark of DBA is a selective decrease in erythroid precursors and anaemia. Other lineages are usually normal and the peripheral white blood cell count is normal. In approximately one-third of cases, the disease is associated with a wide variety of congenital anomalies and malformations3–7. Most cases are sporadic, but 10–20% of them follow a recessive or a dominant inheritance pattern5. A female with DBA and a chromosomal translocation involving chromosome 19q was recently identified8. We undertook a linkage analysis with chromosome 19 markers in multiplex DBA families of Swedish, French, Dutch, Arabic and Italian origin. Significant linkage to chromosome 19q13 was established for dominant and recessive inherited DBA with a peak lod score at D19S197 (Zmax=7.08, θ=0.00). Within this region, a submicroscopic de novo deletion of 3.3 Mb was identified in a patient with DBA. The deletion coincides with the translocation break-point and, together with key recombinations, restricts the DBA gene to a 1.8-Mb region. The results suggest that, despite its clinical heterogeneity, DBA is genetically homogeneous for a gene in 19q13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Diamond, L.K. & Blackfan, K.D. Hypoplastic anemia. Am. J. Dis. Child. 56, 464–467 (1938).

    Google Scholar 

  2. Alter, B.P. Childhood red cell aplasia. Am. J. Pediatr. Hematol. Oncol. 2, 121–139 (1980).

    Google Scholar 

  3. Halperin, D.S. & Freedman, M.H. Diamond-Blackfan anemia: etiology, pathophysiology, and treatment. Am. J. Pediatr. Hematol. Oncol. 11, 380–394 (1989).

    CAS  PubMed  Google Scholar 

  4. Diamond, L.K., Wang, W.C. & Alter, B.P. Congenital hypoplastic anemia. Adv. Pediatr. 22, 349–378 (1976).

    CAS  PubMed  Google Scholar 

  5. Young, N.S. & Alter, B.P., Acquired and Inherited (WB Saunders, Philadelphia, 1994).

    Google Scholar 

  6. Ball, S.E., McGuckin, C.P., Jenkins, G. & Gordon-Smith, B.C. Diamond-Blackfan anemia in the U .K.: analysis of 80 cases from a 20-year birth cohort. Br. J. Haematol. 94, 645–653 (1996).

    Google Scholar 

  7. Janov, A.J., Leong, T., Nathan, D.G. & Guinan, E.C. Diamond-Blackfan anemia. Natural history and sequelae of treatment. Medicine. 75, 77–87 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Gustavsson, P. et al. Diamond-Blackfan anemia in a girl with a de novo balanced reciprocal X; 19 translation. j Med. Genet. (in the press).

  9. D'Avanzo, M., Pistoia, V., Santinelli, R., Corcione, A. & Canino, G. Heterogeneity of the erythroid defect in two cases of Aase- Smith syndrome. Pediatr. Hematol. Oncol. 11, 189–195 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Greinix, H.T. et al. Long-term survival and cure after marrow transplantation for congenital hypoplastic anaemia(Diamond-Blackfan syndrome). Br. J. Haematol. 84, 515–520 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Ashworth, L.K. et al. An integrated metric physical map of human chromosome 19. Nature Genet. 11, 422–27 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Mohrenweiser, H. et al. Report of the third international workshop on human chromosome 19 mapping 1996. Cytogenet Cell Genet. 74, 161–186 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Tassabehji, M. et al. Mutations in the PAX3 gene causing Waardenburg syndrome type 1 and type 2. Nature Genet. 3, 26–31 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Little, M. et al. DNA binding capacity of the WT1 protein is abolished by Denys-Drash syndrome WT1 point mutations. Hum. Mol. Genet. 4, 351–358 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Eber, S.F. et al. Ankyrin-1 mutations are a major cause of dominant and recessive hereditary spherocytosis. Nature Genet. 13, 214–218 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Glader, E.B. & Backer, K. Elevated red cell adenosine deaminase activity: a marker of disordered erythropoiesis in Diamond-Blackfan anaemia and other haematologic diseases. Br. J. Haematol. 68, 165–168 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Gojic, V., Korthof, E.T., Bosch, L.J., Puyn, W.H. & van, Haeringen A., Congenital hypoplastic anemia: another example of autosomal dominant transmission. Am. J. Med. Genet. 50, 87–89 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Pinkel, D., Straume, T. & Gray, J.W., Cytogenetic analysis using quantitative, high-sensitivity, fluorescence in situ hybridization. Proc. Natl. Acad. Sci. USA. 83, 2934–2938 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lichter, P., Cremer, T., Borden, J., Manuelides, L. & Ward, D.C. Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization usfng recombinant DNA libraries. Hum. Genet. 80, 224–234 (1988).

    Article  CAS  PubMed  Google Scholar 

  20. Dib, C. et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380, 152–154 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Cottingham, R.W. Jr., Idury, R.M. & Schaffer, A.A. Faster sequential genetic linkage computations. Am. J. Hum. Genet. 53, 252–263 (1993).

    PubMed  PubMed Central  Google Scholar 

  22. Lathrop, G.M. & Lalouel, J.M. Easy calculations of lod scores and genetic risks on smaller computers. Am. J. Hum. Genet. 3, 460–465 (1984).

    Google Scholar 

  23. Ott, J. Analysis of Human Genetic Linkage (Johns Hopkins University Press, Baltimore, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niklas Dahl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gustavsson, P., Willig, TN., Haeringen, A. et al. Diamond-Blackfan anaemia: genetic homogeneity for a gene on chromosome 19q13 restricted to 1.8 Mb. Nat Genet 16, 368–371 (1997). https://doi.org/10.1038/ng0897-368

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0897-368

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing