Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin

Abstract

Friedreich's ataxia is due to loss of function mutations in the gene encoding frataxin (FRDA). Frataxin is a protein of unknown function. In situ hybridization analyses revealed that mouse frataxin expression correlates wed with the main site of neurodegeneration, but the expression pattern is broader than expected from the pathology of the disease. Frataxin mRNA is predominantly expressed in tissues with a high metabolic rate, including liver, kidney, brown fat and heart. We found that mouse and yeast frataxin homologues contain a potential mitochondrial targeting sequence in their N-terminal domains and that disruption of the yeast gene results in mitochondrial dysfunction. Finally, tagging experiments demonstrate that human frataxin co-localizes with a mitochondrial protein. Friedreich's ataxia is therefore a mitochondrial disease caused by a mutation in the nuclear genome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Skre, H. Friedreich's ataxia in western Norway. Clin. Genet. 7, 287–298 (1975).

    Article  CAS  Google Scholar 

  2. Romeo, G. et al. Incidence of Friedreich ataxia in Italy estimated from consanguineous marriages. Am. J. Hum. Genet. 35, 523–529 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Harding, A. Friedreich's ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 104, 589–620 (1981).

    Article  CAS  Google Scholar 

  4. Dürr, A. et al. Clinical and genetic abnormalities in patients with Friedreich's ataxia. N. Engl. J. Med. 335, 1169–1175 (1996).

    Article  Google Scholar 

  5. Oppenheimer, D.R. & Esiri, M.M. Disease of the basal ganglia, cerebellum and motor neurons. in Greenfield's Neuropathology, 5th ed. (eds Adams, J.H., Corselli, J.A.N. SDuchen, LW.) 1015–1018 (Arnold, London, 1992).

    Google Scholar 

  6. Campuzano, V. et al. Friedreich ataxia, an autosomal recessive disease caused by intronicGAA triplet repeat expansion. Science 271, 1423–1427 (1996).

    Article  CAS  Google Scholar 

  7. Cossée, M. et al. Frataxin fracas. Nature Genet. 15, 337 (1997).

    Article  Google Scholar 

  8. Gibson, T.J., Koonin, E.V., Musco, G., Pastore, A. & Bork, P. Friedreich's ataxia protein: bacterial homologs point to mitochondrial dysfunction. Trends Neurosci. 19, 465–468 (1996).

    Article  CAS  Google Scholar 

  9. Carvajal, J.J. et al. The Friedreich's ataxia gene encodes a novel phosphatidyl inositol-4-phosphate 5-kinase. Nature Genet. 14, 157–162 (1996).

    Article  CAS  Google Scholar 

  10. Carvajal, J.J. et al. Friedreich's ataxia: a defect in signal transduction? Hum. Mol. Genet. 4, 1411–1419 (1995).

    Article  CAS  Google Scholar 

  11. Nakai, K. & Kanehisa, M. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14, 897–911 (1992).

    Article  CAS  Google Scholar 

  12. Goffeau, A. et al. Life with 6000 genes. Science 274, 546–567 (1996).

    Article  CAS  Google Scholar 

  13. Stryer, L. Biochemistry (W. H. Freeman & Co., New York, 1988).

  14. Wallace, D.C., Shoffner, J.M., Trounce, I. & Brown, M.D. Mitochondrial DNA mutations in human degenerative diseases and aging. Biochim. Biophys. Acta 1271, 141–151 (1995).

    Article  Google Scholar 

  15. Schatz, G. & Dobberstein, B. Common principles of protein translocation acrossmembranes. Science 271, 1519–1526 (1996).

    Article  CAS  Google Scholar 

  16. Halliwell, B. Free radicals, antioxidants, and human disease: curiosity, cause or consequence? Lancet 344, 721–724 (1994).

    Article  CAS  Google Scholar 

  17. Rosen, D.R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993).

    Article  CAS  Google Scholar 

  18. Wong, P.C. et al. An adverse property of familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14, 1105–1116 (1995).

    Article  CAS  Google Scholar 

  19. Ouahchi, K. et al. Ataxia with isolated vitamin E deficiency is caused by mutations in the otocopherol transfer protein. Nature Genet. 9, 141–145 (1995).

    Article  CAS  Google Scholar 

  20. Babcock, M. et al. Regulation of mitochondrial iron accumulation by Yfh lp, a putative homolog of frataxin. Science 276, 1709–1712 (1997).

    Article  CAS  Google Scholar 

  21. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular donning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).

    Google Scholar 

  22. Krowczynska, A.M., Coutts, M., Makrides, S. & Brawerman, G. The mouse homologue of the human acidic ribosomal phosphoprotein PO: a highly conserved polypeptide that is under translational control. Nucleic Acids Res. 17, 6408 (1989).

    Article  CAS  Google Scholar 

  23. Décimo, D., Georges-Labousse, E. & Dollé, P. in Gene Probes 2, a Practical Approach (eds Hames, B.D. & Higgins, S.J.) 183–210 (IRL Press, Oxford, 1995).

    Google Scholar 

  24. Schreiber, V., de Murcia, G. & Murcia, J.M. An eucaryotic expression vector for the study of nuclear localization signals. Gene 150, 411–412 (1996).

    Article  Google Scholar 

  25. Gorman, C.M., Lane, D.P. & Rigby, P.W. High efficiency gene transfer into mammalian cells. Philos. Trans. R. Soc. Lond. Biol. Sci. 307, 343–346 (1984).

    Article  CAS  Google Scholar 

  26. Rothstein, R., argeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol. 194, 281–301 (1991).

    Article  CAS  Google Scholar 

  27. Wach, A., Brachat, A., Pohlman, R. & Philipsen, P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10, 1793–1808 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Koenig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koutnikova, H., Campuzano, V., Foury, F. et al. Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin. Nat Genet 16, 345–351 (1997). https://doi.org/10.1038/ng0897-345

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0897-345

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing