Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Different chromosomal localization of the Clcn4 gene in Mus spretus and C57BL/6J mice

Abstract

We report the unprecedented finding of a gene with a different map position in two mouse strains. The Clcn4 gene was found to map to the X chromosome in the wild Mediterrean mouse, Mus spretus but to chromosome 7 in the inbred strain of laboratory mouse C57BL/6J. These data indicate that a recent evolutionary rearrangement occurred on the mouse sex chromosomes, very close to the pseudoautosomal region. Our data provide molecular evidence for a major divergence near the pseudoautosomal region, consistent with the hypothesis that hybrid sterility in these species results from abnormal pairing of sex chromosomes during male meiosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rappold, G.A. The pseudoautosomal regions of the human sex chromosomes. Hum. Genet 92, 315–324 (1993).

    Article  CAS  Google Scholar 

  2. Mohandas, T.K. et al. Role of the pseudoautosomal region in sex-chromosome pairing during male meiosis: meiotic studies in a man with a deletion of distal Xp. Am. J. hum. Genet. 51, 526–533 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Rouyer, F. et al. A gradient of sex linkage in the pseudoautosomal region of the human sex chromosomes. Nature 319, 291–295 (1986).

    Article  CAS  Google Scholar 

  4. Soriano, P. et al. High rate of recombination and double crossovers in the mouse pseudoautosomal region during male meiosis. Proc. natn. Acad. Sci. U.S.A. 84, 7218–7220 (1987).

    Article  CAS  Google Scholar 

  5. Haldane, J.B.S. Sex ratio and unisexual sterility in hybrid animals. J. Genet. 12, 101–109 (1922).

    Article  Google Scholar 

  6. Coyne, J.A. The genetic basis of Haldane's rule. Nature 314, 736–738 (1985).

    Article  CAS  Google Scholar 

  7. Matsuda, Y., Hirobe, T. & Chapman, V.M. Genetic basis of X-Y chromosome dissociation and male sterility in interspecific hybrids. Proc. natn. Acad. Sci. U.S.A. 88, 4850–4854 (1991).

    Article  CAS  Google Scholar 

  8. Matsuda, Y., Moens, P.B. & Chapman, V.M. Deficiency of X and Y chromosomal pairing at meiotic prophase in spermatocytes of sterile interspecific hybrids between laboratory mice (Mus domesticus) and Mus spretus. Chromosoma 101, 483–492 (1992).

    Article  CAS  Google Scholar 

  9. Hale, D.W., Washburn, L.L. & Eicher, E.M. Meiotic abnormalities in hybrid mice of the C57BL/6J × Mus spretus cross suggest a cytogenetic basis for Haldane's rule of hybrid sterility. Cytogenet. Cell Genet. 63, 221–234 (1993).

    Article  CAS  Google Scholar 

  10. van Slegtenhorst, M.A. et al. A gene from the Xp22.3 region shares homology with voltage-gated chloride channels. Hum. molec. Genet 3, 547–552 (1994).

    Article  CAS  Google Scholar 

  11. Kozak, M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucl. Acids Res. 12, 857–872 (1984).

    Article  CAS  Google Scholar 

  12. Jentsch, T.J., Steinmeyer, K. & Schwarz, G. Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature 348, 510–514 (1990).

    Article  CAS  Google Scholar 

  13. Steinmeyer, K., Ortland, C. & Jentsch, T.J. Primary structure and functional expression of a developmentally regulated skeletal muscle chloride channel. Nature 354, 301–304 (1991).

    Article  CAS  Google Scholar 

  14. Thiemann, A., Grunder, S., Pusch, M. & Jentsch, T.J. A chloride channel widely expressed in epithelial and non-epithelial cells. Nature 356, 57–60 (1992).

    Article  CAS  Google Scholar 

  15. Steinmeyer, K., Lorenz, C., Pusch, M., Koch, M.C. & Jentsch, T.J. Multimeric structure of CIC-1 chloride channel revealed by mutations in dominant myotonia congenita (Thomsen). EMBO J. 13, 737–743 (1994).

    Article  CAS  Google Scholar 

  16. Borsani, G., Rugarli, E.I., Taglialatela, M., Wong, C. & Ballabio, A. Characterization of a human and murine gene (CLCN3) sharing similarities to voltage-gated chloride channels and to a yeast integral membrane protein. Genomics 27, 131–141 (1995).

    Article  CAS  Google Scholar 

  17. Fisher, S.E. et al. Isolation and partial characterization of a chloride channel gene which is expressed in kidney and is a candidate for Dent's disease (an X-linked hereditary nephrolithiasis). Hum. molec. Genet 3, 2053–2059 (1994).

    CAS  PubMed  Google Scholar 

  18. Chapman, V.M., Keitz, B.T., Disteche, C.M., Lau, E.C. & Snead, M.L. Linkage of Amelogenin (Amel) to the distal portion of the mouse X chromosome. Genomics 10, 23–28 (1991).

    Article  CAS  Google Scholar 

  19. Lyon, M.F., Searle, A.G., Ford, C.E. & Ohno, S. A mouse translocation suppressing sex-linked variegation. Cytogenet 3, 306–323 (1964).

    Article  CAS  Google Scholar 

  20. Rowe, L.B. et al. Maps from two interspecific backcross DNA panels available as a community genetic mapping resource. Mamm. Genome 5, 253–274 (1994).

    Article  CAS  Google Scholar 

  21. Ferris, S.D., Sage, R.D., Prager, E.M., Ritte, U. & Wilson, A.C. Mitocondrial DNA evolution in mice. Genetics 107, 681–721 (1983).

    Google Scholar 

  22. Ohno, S., Chromosomes and Sex-linked Genes. 1–140 (Springer-Verlag, Berlin, 1967).

    Book  Google Scholar 

  23. Disteche, C.M. et al. The human pseudoautosomal GM-CSF receptor a subunit gene is autosomal in mouse. Nature Genet. 1, 333–336 (1992).

    Article  CAS  Google Scholar 

  24. Milatovich, A., Kitamura, T., Miyajima, A. & Francke, U. Gene for the a-subunit of the human interleukin-3 receptor (1L3RA) localized to the X-Y pseudoautosomal region. Am. J. hum. Genet. 53, 1146–1153 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gibbs, R.A., Nguyen, P.M., McBride, L.J., Koepf, S.M. & Caskey, C.T. Identification of mutations leading to the Lesch-Nyhan syndrome by automated direct DNA sequencing of in vitro amplified cDNA. Proc. natn. Acad. Sci. U.S.A. 86, 1919–1923 (1989).

    Article  CAS  Google Scholar 

  26. Marck, C. ‘DNA Strider’: a ‘C’ program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucl. Acids Res. 16, 1829–1836 (1988).

    Article  CAS  Google Scholar 

  27. Genetics Computer Group. Program Manual GCG Package ver 7-UNIX (Madison, Wisconsin, 1991).

  28. Maniatis, T., Fritsch, E.S. & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor,1982).

    Google Scholar 

  29. Harbers, K., Francke, U., Soriano, P., Jaenisch, R. & Muller, U. Cytogenet. Cell Genet. 53, 129–133 (1990).

    Article  CAS  Google Scholar 

  30. Lee, K., Keitz, B., Taira, B. & Chapman, V.M. Linkage of phosphoribosylpyrophosphate synthetases 1 and 2, Prpsl and Prps2, on the mouse X chromosome. Mamm. Genome 5, 612–615 (1994).

    Article  CAS  Google Scholar 

  31. Eicher, E., Lee, B., Washburn, L., Hale, D. & King, T. Telomere-related markers for the pseudoautosomal region of the mouse genome. Proc. natn. Acad. Sci. U.S.A. 89, 2160–2164 (1992).

    Article  CAS  Google Scholar 

  32. Adler, D.A., Bressler, S.L., Chapman, V.M., Page, D.C. & Disteche, C.M. Inactivation of the Zfx gene on the mouse X chromosome. Proc. natn. Acad. Sci. U.S.A. 88, 4592–4595 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rugarli, E., Adler, D., Borsani, G. et al. Different chromosomal localization of the Clcn4 gene in Mus spretus and C57BL/6J mice. Nat Genet 10, 466–471 (1995). https://doi.org/10.1038/ng0895-466

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0895-466

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing