Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The renal glomerulus of mice lacking s–laminin/laminin β2: nephrosis despite molecular compensation by laminin β1

Abstract

S–laminin/laminin β2, a homologue of the widely distributed laminin B1/β1 chain, is a major component of adult renal glomerular basement membrane (GBM). Immature GBM bears p1, which is replaced by β2 as development proceeds. In mutant mice that lack β2, the GBM remains rich in β1, suggesting that a feedback mechanism normally regulates GBM maturation. The β2–deficient GBM is structurally intact and contains normal complements of several collagenous and noncollagenous glycoproteins. However, mutant mice develop massive proteinuria due to failure of the glomerular filtration barrier. These results support the idea that laminin β chains are functionally distinct although they assemble to form similar structures. Laminin β2–deficient mice may provide a model for human congenital or idiopathic nephrotic syndromes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rohrbach, D.H. & Timpl, R., (eds) in Molecular and cellular aspects of basement membranes. (Academic Press, Inc., San Diego, 1993).

    Google Scholar 

  2. Burgeson, R.E. et al. A new nomenclature for laminins. Matrix Biol. 14, 209–211 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Timpl, R. & Brown, J.C. The laminins. Matrix Biol. 14, 275–281 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Hudson, B.G., Reeders, S.T. & Tryggvason, K. Type IV collagen: structure, gene organization, and role in human diseases. J. biol. Chem. 268, 26033–26036 (1993).

    CAS  PubMed  Google Scholar 

  5. Sanes, J.R., Engvall, E., Butkowski, R. & Hunter, D.D. Molecular heterogeneity of basal laminae: Isoforms of laminin and collagen IV at the neuromuscular junction and elsewhere. J. Cell Biol. 111, 1685–1699 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Hunter, D.D., Shah, V., Merlie, J.P. & Sanes, J.R. A laminin-like adhesive protein concentrated in the synaptic cleft of the neuromuscular junction. Nature 338, 229–234 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Kleppel, M.M., Kashtan, C., Santi, P.A., Wieslander, J. & Michael, A.F. Distribution of familial nephritis antigen in normal tissue and renal basement membranes of patients with homozygous and heterozygous Alport familial nephritis. Lab. Invest. 61, 278–289 (1989).

    CAS  PubMed  Google Scholar 

  8. Hostikka, S.L. et al. Identification of a distinct type IV collagen α chain with restricted kidney distribution and assignment of its gene to the locus of X chromosome-linked Alport syndrome. Proc. natn. Acad. Sci. U.S.A. 87, 1606–1610 (1990).

    Article  CAS  Google Scholar 

  9. Miner, J.H. & Sanes, J.R. Collagen IV α3, α4, and α5 chains in rodent basal laminae: sequence, distribution, association with laminins, and developmental switches. J. Cell Biol. 127, 879–891 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Ekblom, P. Renal development. in The kidney (eds Seldin, D. W. & Giebisch, G.) 475–501 (Raven Press, New York, 1992).

    Google Scholar 

  11. Reeves, W.H., Kanwar, Y.S. & Farquhar, M.G. Assembly of the glomerular filtration surface. J. Cell Biol. 85, 735–753 (1980).

    Article  CAS  PubMed  Google Scholar 

  12. Vehaskari, V.M. & Robson, A.M. Proteinnuria. in Pediatric kidney disease (ed. Edelman, Jr., C.M.) 531–551 (Little, Brown and Company, Boston, 1992).

    Google Scholar 

  13. Barker, D.F. et al. Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science 248, 1224–1227 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Mochizuki, T. et al. Identification of mutations in the β3(IV) and β4(IV) collagen genes in autosomal recessive Alport syndrome. Nature Genet. 8, 77–82 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Zhou, J. et al. Deletion of the paired α5(IV) and α6(IV) collagen genes in inherited smooth muscle tumors. Science 261, 1167–1169 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Kashtan, C.E., Sibley, R.K., Michael, A.F. & Vernier, R.L. Hereditary nephritis: Alport syndrome and thin glomerular basement membrane disease. in Renal pathology: with clinical and functional correlations, (eds C. C. Tisher & Brenner, B.M.) 1239–1266 (J.B. Lippincott Co., Philadelphia, 1994).

    Google Scholar 

  17. Noakes, P.G., Gautam, M., Mudd, J., Sanes, J.R. & Merlie, J.P. Aberrant differentiation of neuromuscular junctions in mice lacking s-laminin/laminin β2. Nature 374, 258–262 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Nash, M.A., Edelmann Jr., C.M., Bernstein, J. & Bamett, H.L. The nephrotic syndrome. in Pediatric kidney disease (ed. Edelman, Jr., C.M.) 1247–1251 (Little, Brown and Company, Boston, 1992).

    Google Scholar 

  19. Olson, J.L. The nephrotic syndrome. in Pathology of the kidney (ed. Heptinstall, R.H.) 779–869 (Little, Brown and Company, Boston, (1992).

    Google Scholar 

  20. Schnaper, H.W. & Robson, A.M. Nephrotic syndrome: minimal change disease, focal glomerulosclerosis, and related disorders. in Diseases of the kidney, (eds Schrier, R. W. & Gottschalk, C.W.) 1731–1766 (Little, Brown and Company, Boston, 1993).

    Google Scholar 

  21. Sorokin, L. & Ekblom, P. Development of tubular and glomerular cells of the kidney. Kidney Int. 41, 657–664 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Timpl, R. Proteoglycans of basement membranes. Experientia 49, 417–428 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Katz, A. et al. Renal entactin (nidogen): isolation, characterization and tissue distribution. Kidney Intl. 40, 643–652 (1991).

    Article  CAS  Google Scholar 

  24. Fallen, J.R. & Hall, Z.W. Building synapses: agrin and dystroglycan stick together. Trends Neurosci 17, 469–473 (1994).

    Article  Google Scholar 

  25. Desjardins, M. & Bendayan, M. Ontogenesis of glomerular basement membrane: structural and functional properties. J. Cell Biol. 113, 689–700 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Carlson, J.A. & Harrington, J.T. Laboratory evaluation of renal function. in Diseases of the kidney (edsSchrier,R. W. & Gottschalk,C.W.) 383–389 (Little, Brown and Company, Boston, (1993).

    Google Scholar 

  27. Scharer, K. & Gilli, G. Growth retardation in kidney disease. in Pediatric kidney disease, (ed. Edelman, Jr., C.M.) 593–596 (Little, Brown and Company, Boston, 1992).

    Google Scholar 

  28. McCluskey, R.T. Immunologic aspects of renal disease in Pathology of the kidney 4th edn (ed. Heptinstall, R.H.) 169–260 (Little, Brown, and Company, Boston, (1992).

    Google Scholar 

  29. Couser, W.G. Pathogenesis of glomerulonephritis. Kidney Int. 44, S19–S26 (1993).

    Article  Google Scholar 

  30. Eddy, A. & Michael, A.F. Immune mechanisms of renal injury. in Pediatric kidney disease (ed. Edelman, Jr., C.M.) 329–397 (Little, Brown and Company, Boston, (1992).

    Google Scholar 

  31. Kashtan, C.E. & Kim, Y. Distribution of the α1 and α2 chains of collagen IV and of collagens V and VI in Alport syndrome. Kidney Int. 42, 115–126 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Sariola, H. et al. Dual origin of glomerular basement membrane. Develop. Biol. 101, 86–96 (1984).

    Article  CAS  PubMed  Google Scholar 

  33. Daniels, B.S. Increased albumin permeability in vitro following alterations of glomerular charge is mediated by the cells of the filtration barrier. J. Lab. clin. Med. 124, 224–230 (1994).

    CAS  PubMed  Google Scholar 

  34. Sanes, J.R. Extracellular matrix molecules that influence neural development. Ann. Rev. Neurosci 12, 491–516 (1989).

    Article  CAS  PubMed  Google Scholar 

  35. Frenk, S., Antonowicz, I., Craig, J.M. & Metcoff, J. Experimental nephrotic syndrome in rats by aminonucleotide: renal lesions and body electrolyte compositions. Proc. Soc. exp. Biol. Med. 89, 424–427 (1955).

    Article  CAS  PubMed  Google Scholar 

  36. Ogura, A. et al. Hereditary nephrotic syndrome with progression to renal failure in a mouse model (ICGN strain): clinical study. Nephron 68, 239–244 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Hudson, B.G. et al. The pathogenesis of Alport syndrome involves type IV collagen molecules containing the α3(IV) chain: evidence from anti-GBM nephritis after renal transplantation. Kidney Int. 42, 179–187 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Kestila, M. et al. Congenital nephrotic syndrome of the Finnish type maps to the long arm of chromosome 19. Am. J. hum. Genet. 54, 757–764 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wewer, U.M. et al. Human β2 chain of laminin (formerly S chain): cDNA cloning, chromosomal localization, and expression in carcinomas. Genomics 24, 243–252 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Sunada, Y., Bernier, S.M., Kozak, C.A., Yamada, Y. & Campbell, K.P. Deficiency of merosin in dystrophic dy mice and genetic linkage of laminin M chain gene to dy locus. J. Biol. Chem. 269, 13729–13732 (1994).

    CAS  PubMed  Google Scholar 

  41. Hong, X., Wu, X.-R., Wewer, U.M. & Engvall, E. Murine muscular dystrophy caused by a mutation in the laminin α2 (Lama2) gene. Nature Genet. 8, 297–302 (1994).

    Article  Google Scholar 

  42. Pulkkinen, L. et al. Mutations in the γ2 chain gene (LAMC2) of kalinin/laminin 5 in the junctional forms of epidermolysis bullosa. Nature Genet. 6, 293–298 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Aberdam, D. et al. Herlitz's junctional epidermolysis bullosa is linked to mutations in the gene (LAMC2) for the γ2 subunit of nicein/kalinin (LAMININ-5). Nature Genet. 6, 299–304 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Sanes, J.R. Laminin, fibronectin and collagen in synaptic and extrasynaptic portions of muscle fiber basement membrane. J. Cell Biol. 93, 442–451 (1982).

    Article  CAS  PubMed  Google Scholar 

  45. Sugiyama, J., Bowen, D.C. & Hall, Z.W. Dystroglycan binds nerve and muscle agrin. Neuron 13, 103–115 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Kato, M., Koike, Y., Suzuki, S. & Kimata, K. Basement membrane proteoglycan in various tissues: characterization using monoclonal antibodies to the Engelbreth-Holm-Swarm mouse tumor low density heparan sulfate proteoglycan. J. Cell Biol. 106, 2203–2210 (1988).

    Article  CAS  PubMed  Google Scholar 

  47. Bender, B.L., Jaffe, R., Carlin, B. & Chung, A.E. Immunolocalization of entactin, a sulfated basement membrane component, in rodent tissues, and comparison with GP-2 (laminin). Am. J. Pathol. 103, 419–426 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Abrahamson, D.R. et al. Selective immunoreactivities of kidney basement membranes to monoclonal antibodies against laminin: localization of the end of the long arm and the short arms to discrete microdomains. J. Cell Biol. 109, 3477–3491 (1989).

    Article  CAS  PubMed  Google Scholar 

  49. Abrahamson, D.R. & St. John, P.L. Loss of laminin epitopes during glomerular basement membrane assembly in developing mouse kidneys. J. Histochem. Cytochem. 40, 1943–1953 (1992).

    Article  CAS  PubMed  Google Scholar 

  50. Martin, P.T., Ettinger, A.J. & Sanes, J.R. A synaptic localization domain in the synaptic cleft protein laminin β2 (s-laminin) Science (in the press).

  51. Green, T.L., Hunter, D.D., Chan, W., Merlie, J.P. & Sanes, J.R. Synthesis and assembly of the synaptic cleft protein s-laminin by cultured cells. J. biol. Chem. 267, 2014–2022 (1992).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noakes, P., Miner, J., Gautam, M. et al. The renal glomerulus of mice lacking s–laminin/laminin β2: nephrosis despite molecular compensation by laminin β1. Nat Genet 10, 400–406 (1995). https://doi.org/10.1038/ng0895-400

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0895-400

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing