Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutation of the gene encoding the ROR2 tyrosine kinase causes autosomal recessive Robinow syndrome

A Correction to this article was published on 01 November 2000

Abstract

Robinow syndrome is a short-limbed dwarfism characterized by abnormal morphogenesis of the face and external genitalia, and vertebral segmentation1,2. The recessive form of Robinow syndrome (RRS; OMIM 268310), particularly frequent in Turkey3,4,5,6, has a high incidence of abnormalities of the vertebral column such as hemivertebrae and rib fusions, which is not seen in the dominant form. Some patients have cardiac malformations or facial clefting. We have mapped a gene for RRS to 9q21–q23 in 11 families. Haplotype sharing was observed between three families from Turkey, which localized the gene to a 4.9-cM interval. The gene ROR2, which encodes an orphan membrane-bound tyrosine kinase, maps to this region. Heterozygous (presumed gain of function) mutations in ROR2 were previously shown to cause dominant brachydactyly type B (BDB; ref. 7). In contrast, Ror2−/− mice have a short-limbed phenotype that is more reminiscent of the mesomelic shortening observed in RRS. We detected several homozygous ROR2 mutations in our cohort of RRS patients that are located upstream from those previously found in BDB. The ROR2 mutations present in RRS result in premature stop codons and predict nonfunctional proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenotypic features of RRS.
Figure 2: Genotyping results for markers from the long arm of chromosome 9 in RRS family 1.
Figure 3: ROR2 mutations in RRS families.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Robinow, M., Silverman, F.N. & Smith, H.D. A newly recognised dwarfing syndrome. Am. J. Dis. Child. 117, 645–651 (1969).

    CAS  PubMed  Google Scholar 

  2. Butler, M.G. & Wadlington, W.B. Robinow syndrome: reports of two patients and review of literature. Clin. Genet. 31, 77–85 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Balci, S., Beksac, S., Haliloglu, M., Ercis, M. & Eryilmaz, M. Robinow syndrome, vaginal atresia, hematocolpos, and extra middle finger. Am. J. Med. Genet. 79, 27–29 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Balci, D., Ercal, M.D., Say, B. & Atasu, M. Robinow syndrome: with special emphasis on dermatoglyphics and hand malformations (split hand). Clin. Dysmorphol. 2, 199–207 (1993).

    CAS  PubMed  Google Scholar 

  5. Aksit, S. et al. Is the frequency of Robinow syndrome relatively high in Turkey? Four more case reports. Clin. Genet. 52, 226–230 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Atalay, S. et al. Congenital heart disease and Robinow syndrome. Clin. Dysmorphol. 2, 208–210 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Oldridge, M. et al. Dominant mutations in ROR2, encoding an orphan receptor tyrosine kinase, cause brachydactyly type B. Nature Genet. 24, 275–278 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. DeChiara, T.M. et al. Ror2, encoding a receptor-like tyrosine kinase, is required for cartilage and growth plate development. Nature Genet. 24, 271–274 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Takeuchi, S. et al. Mouse ror2 receptor tyrosine kinase is required for the heart development and limb formation. Genes Cells 5, 71–78 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Oishi, I. et al. Spatio-temporally regulated expression of receptor tyrosine kinases, mRor1, mRor2, during mouse development: implications in development and function of the nervous system. Genes Cells 4, 41–56 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Masiakowski, P. & Carroll, R.D. A novel family of cell surface receptor with tyrosine kinase-like domain. J. Biol. Chem. 267, 26181–26190 (1992).

    CAS  PubMed  Google Scholar 

  12. Wilson, C., Goberdhan, D.C.I. & Steller, H. Dror, a potential neurotrophic receptor gene, encodes a Drosophila homolog of the vertebrate Ror family of Trk-related receptor tyrosine kinases. Proc. Natl Acad. Sci. USA 90, 7109–7113 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oishi, I. et al. A novel Drosophila receptor tyrosine kinase expressed specifically in the nervous system. Unique structural features and implication in developmental signaling. J. Biol. Chem. 272, 11916–11923 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Forrester, W.C., Dell, M., Perens, E. & Garriga, G. A C. elegans Ror receptor tyrosine kinase regulates cell motility and asymmetric cell division. Nature 400, 881–885 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Furie, B. & Furie, B.C. The molecular basis of blood coagulation. Cell 53, 505–518 (1988).

    Article  CAS  PubMed  Google Scholar 

  16. Nakamura, T. et al. Molecular cloning and expression of human hepatocyte growth factor. Nature 342, 440–443 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Cunningham, M.E., Stephens, R.M., Kaplan, D.R. & Greene, L.A. Autophosphorylation of activation loop tyrosines regulates signaling by the TRK nerve growth factor receptor. J. Biol. Chem. 272, 10957–10967 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Hanks, S.K. & Quinn, A.M. Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol. 200, 38–62 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Obermeier, A. et al. Tyrosine 785 is a major determinant of Trk-substrate interaction. EMBO J. 12, 933–941 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Loeb, D.M., Stephens, R.M., Copeland, T., Kaplan, D.R. & Greene, L.A. A Trk nerve growth factor (NGF) receptor point mutation affecting interaction with phospholipase C-g1 abolishes NGF-promoted peripherin induction but not neurite outgrowth. J. Biol. Chem. 269, 8901–8910 (1994).

    CAS  PubMed  Google Scholar 

  21. Wilkie, A.O.W. Craniosynostosis: genes and mechanisms. Hum. Mol. Genet. 6, 1647–1656 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Shiang, R. et al. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78, 335–342 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Tavormina, P.L. et al. Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nature Genet. 9, 321–328 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Bellus, G.A. et al. Identical mutations in three different fibroblast growth factor receptor genes in autosomal dominant craniosynostosis syndromes. Nature Genet. 14, 174–176 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Tavormina, P.L. et al. A novel skeletal dysplasia with developmental delay and acanthosis nigricans is caused by a lys650-to-met mutation in the fibroblast growth factor receptor 3 gene. Am. J. Hum. Genet. 64, 722–731 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, C. et al. A Lys644Glu substitution in fibroblast growth factor receptor 3 (FGFR3) causes dwarfism in mice by activation of STATs and ink4 cell cycle inhibitors. Hum. Mol. Genet. 8, 35–44 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Deng, C., Wynshaw-Boris, A., Zhou, F., Kuo, A. & Leder, P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84, 911–921 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Kremer, H. et al. Localization of the gene for dominant cystoid macular dystrophy on chromosome 7p. Hum. Mol. Genet. 3, 299–302 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Dib, C. et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380, 152–154 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Lathrop, G.M. & Lalouel, J.M. Easy calculations of LOD scores and genetic risks on small computers. Am. J. Hum. Genet. 36, 460–465 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Bosgoed for technical assistance; M.A.M. van Steensel for discussions; and A. Wilkie for sharing genomic sequence data for ROR2. This work was supported by grants from the Dutch Foundation for Scientific Research (NWO) and by the Jan Dekker/Lutgardine Bouwman stichting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han G. Brunner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Bokhoven, H., Celli, J., Kayserili, H. et al. Mutation of the gene encoding the ROR2 tyrosine kinase causes autosomal recessive Robinow syndrome. Nat Genet 25, 423–426 (2000). https://doi.org/10.1038/78113

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/78113

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing