Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

The roads from phenotypic variation to gene discovery: mutagenesis versus QTLs

In model organisms, chemical mutagenesis provides a powerful alternative to natural, polygenic variation (for example, quantitative trait loci (QTLs)) for identifying functional pathways and complex disease genes. Despite recent progress in QTLs, we expect that mutagenesis will ultimately prove more effective because the prospects of gene identification are high and every gene affecting a trait is potentially a target.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Lander, E.S. & Botstein, D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Dietrich, W.F. et al. A comprehensive genetic map of the mouse genome. Nature 380, 149–152 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Wang, D.G. et al. Large scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280, 1077–1082 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Haley, C.S. & Knott, S.A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69, 315–324 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Churchill, G.A. & Doerge, R.W. Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zeng, Z.B. Precision mapping of quantitative trait loci. Genetics 136, 1457–1468 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lander, E.S. & Kruglyak, L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genet. 11, 241–247 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Darvasi, A. Experimental strategies for the genetic dissection of complex traits in animal models. Nature Genet. 18, 19–24 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Paterson, A.H. Molecular Dissection of Complex Traits (CRC Press, Boca Raton, 1998).

    Google Scholar 

  10. Battey, J., Jordan, E., Cox, D. & Dove, W. An action plan for mouse genomics. Nature Genet. 21, 73–75 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Justice, M.J. Mouse ENU mutagenesis. Hum. Mol. Genet. 8, 1955–1963 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Cormier, R.T. et al. Secretory phospholipase Pla2g2a confers resistance to intestinal tumorigenesis. Nature Genet. 17, 88–91 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Fridman, E., Pleban, T. & Zamir, D. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc. Natl Acad. Sci. USA 97, 4718–4723 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Demant, P. & Hart, A.A. Recombinant congenic strains—a new tool for analyzing genetic traits determined by more than one gene. Immunogenetics 24, 416–422 (1986).

    Article  CAS  PubMed  Google Scholar 

  15. Nadeau, J.H., Singer, J.B., Matin, A. & Lander, E.S. Analysing complex genetic traits with chromosome substitution strains. Nature Genet. 24, 221–225 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Matin, A., Collin, G.B., Asada, Y., Varnum, D. & Nadeau, J.H. Susceptibility to testicular germ-cell tumours in a 129.MOLF-Chr 19 chromosome substitution strain. Nature Genet. 23, 237–240 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Legare, M.E., Bartlett, F.S. II & Frankel, W.N. A major effect QTL determined by multiple genes in epileptic EL mice. Genome Res. 10, 42–48 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Talbot, C.J. et al. High-resolution mapping of quantitative trait loci in outbred mice. Nature Genet. 21, 305–308 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Darvasi, A. & Soller, M. Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 141, 1199–1207 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Malo, D. et al. Haplotype mapping and sequence analysis of the mouse Nramp gene predict susceptibility to infection with intracellular parasites. Genomics 23, 51–61 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Manenti, G. et al. Linkage disequilibrium and physical mapping of Pas1 in mice. Genome Res. 9, 639–646 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. You, Y. et al. Chromosomal deletion complexes in mice by radiation of embryonic stem cells. Nature Genet. 15, 285–288 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Schimenti, J. & Bucan, M. Functional genomics in the mouse: phenotype-based mutagenesis screens. Genome Res. 8, 698–710 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Symula, D.J. et al. Functional screening of an asthma QTL in YAC transgenic mice. Nature Genet. 23, 241–244 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Marker, P.C., Seung, K., Bland, A.E., Russell, L.B. & Kingsley, D.M. Spectrum of Bmp5 mutations from germline mutagenesis experiments. Genetics 145, 435–443 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, Y. et al. Genotype-based screen for ENU-induced mutations in mouse embryonic stem cells. Mamm. Genome 11, 500–506 (2000).

    Article  Google Scholar 

  27. Munroe, R.J. et al. Mouse mutants from chemically mutagenized embryonic stem cells. Mamm. Genome 11, 507–510 (2000).

    Article  Google Scholar 

  28. Nolan, P.M. et al. A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nature Genet. 25, 440–443 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Hrabe de Angelis, M. et al. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nature Genet. 25, 444–447 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Rinchik, E.M. Chemical mutagenesis and fine-structure functional analysis of the mouse genome. Trends Genet. 7, 15–21 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Davis, A.P. & Justice, M.J. Mouse alleles: if you've seen one, you haven't seen them all. Trends Genet. 14, 438–441 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Sztein, J.M., Farley, J.S., Young, A.F. & Mobraaten, L.E. Motility of cryopreserved mouse spermatozoa affected by temperature of collection and rate of thawing. Cryobiology 35, 46–52 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Sztein, J., Sweet, H., Farley, J. & Mobraaten, L. Cryopreservation and orthotopic transplantation of mouse ovaries: new approach in gamete banking. Biol. Reprod. 58, 1071–1074 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Glenister, P.H. & Thornton, C.E. Cryoconservation—archiving for the future. Mamm. Genome 11, 565–571 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Churchill, J. Naggert and J. Schimenti for comments on this manuscript. This work was supported by NIH grants HL58982, CA75056 and RR12305 to J.H.N.; NS31348, DC03611, NS40246 to W.N.F.; by a Cancer Center Support grant CA34196 to The Jackson Laboratory; by a grant from the Keck Foundation to the Department of Genetics, Case Western Reserve University; and by a Howard Hughes Medical Institute grant to the Case Western Reserve University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joseph H. Nadeau or Wayne N. Frankel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadeau, J., Frankel, W. The roads from phenotypic variation to gene discovery: mutagenesis versus QTLs. Nat Genet 25, 381–384 (2000). https://doi.org/10.1038/78051

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/78051

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing