Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mice lacking the myotonic dystrophy protein kinase develop a late onset progressive myopathy

Abstract

Myotonic dystrophy (DM) is an autosomal dominant disorder resulting from the expansion of a CTG repeat in the 3′ untranslated region of a putative protein kinase (DMPK). To elucidate the role of DMPK in DM pathogenesis we have developed DMPK deficient (DMPK−/−) mice. DMPK−/− mice develop a late-onset, progressive skeletal myopathy that shares some pathological features with DM. Muscles from mature mice show variation in fibre size, increased fibre degeneration and fibrosis. Adult DMPK−/− mice show ultrastructural changes in muscle and a 50% decrease in force generation compared to young mice. Our results indicate that DMPK may be necessary for the maintenance of skeletal muscle structure and function and suggest that a decrease in DMPK levels may contribute to DM pathology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Harper, P.S. in Myotonic Dystrophy. 2nd. ed. (W.B. Saunders, 1989).

    Google Scholar 

  2. Howeler, C.J., Busch, H.F., Geraedts, J.P., Niermeijer, M.F. & Staal, A. Anticipation in myotonic dystrophy: Fact or fiction?. Brain 112, 779–797 (1989).

    Article  Google Scholar 

  3. O'Brien, T., Harper, P.S. Course, prognosis and complications of childhood-onset myotonic dystrophy. Dev. Med. Child. Neurol. 26, 62–67 (1984).

    Article  CAS  Google Scholar 

  4. Brook, J.D. et al. Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68, 799–808 (1992).

    Article  CAS  Google Scholar 

  5. Fu, Y.-H. et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255, 1256–1258 (1992).

    Article  CAS  Google Scholar 

  6. Mahadevan, M. et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255, 1253–1255 (1992).

    Article  CAS  Google Scholar 

  7. Harley, H. et al. Size of the unstable CTG repeat sequence in relation to phenotype and parental transmission in myotonic dystrophy. Am. J. Hum. Genet. 52, 1164–1174 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. La Spada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E. & Fishbeck, K.H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    Article  CAS  Google Scholar 

  9. Verkerk, A.J.M.H. et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a fragile X breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914 (1991).

    Article  CAS  Google Scholar 

  10. The Huntington's Disease Research Group. A novel gene encoding a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosome. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  11. Knight, S.J. et al. Trinucleotide repeat amplification and hypermethylation of a CpG island in FRAXE mental retardation. Cell 74, 127–134 (1993).

    Article  CAS  Google Scholar 

  12. Orr, H.T. et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nature Genet. 4, 221–226 (1993).

    Article  CAS  Google Scholar 

  13. Burke, J.R. et al. The Haw River syndrome: dentatorubropallidoluysian atrophy (DRPLA) in an African-American family. Nature Genet. 7, 521–524 (1994).

    Article  CAS  Google Scholar 

  14. Koide, R. et al. Unstable expansion of CAG repeat in hereditary dentatorubralpallidoluysian atrophy (DRPLA). Nature Genet. 6 1994).

    Article  CAS  Google Scholar 

  15. Nancarrow, J.K. et al. Implications of FRA 16A structure for the mechanism of chromosomal fragile site genesis. Science 264, 1938–1941 (1994).

    Article  CAS  Google Scholar 

  16. Pieretti, M. et al. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 66, 817–822 (1991).

    Article  CAS  Google Scholar 

  17. Feng, Y. et al. Translational supression by trinucleotide repeat at FMR1. Science 268, 731–734 (1995).

    Article  CAS  Google Scholar 

  18. Housman, D. Gain of glutamines, gain of function. Nature Genet. 10, 3–4 (1995).

    Article  CAS  Google Scholar 

  19. Fu, Y.-H. et al. Decreased expression of myotonin-protein kinase messenger RNA and protein in adult form of myotonic dystrophy. Science 260, 235–237 (1993).

    Article  CAS  Google Scholar 

  20. Sabouri, L.A. et al. Effect of the myotonic dystrophy (DM) mutation on mRNA levels of the DM gene. Nature Genet. 4, 233–238 (1993).

    Article  CAS  Google Scholar 

  21. Carango, P., Noble, J.E., Marks, H.G. & Funanage, V.L. Absence of myotonic dystrophy protein kinase (DMPK) mRNA as a result of a triplet repeat expansion in myotonic dystrophy. Genomics 18, 340–348 (1993).

    Article  CAS  Google Scholar 

  22. Hofmann-Radvanyi, H. et al. Myotonic dystrophy: Absence of CTG enlarged transcript in congenital forms and low expression of the normal allele. Hum. Mol. Genet. 2, 1263–1267 (1993).

    Article  CAS  Google Scholar 

  23. Novelli, G. et al. Failure in detecting mRNA transcripts from the mutated allele in myotonic dystrophy muscle. Biochem. Med. Metabol. Biol. 50, 85–92 (1993).

    Article  CAS  Google Scholar 

  24. Koga, R. et al. Decreased myotonin-protein kinase in skeletal and cardiac muscles in myotonic dystrophy. Biochem. Biophys. Res. Commun. 202, 577–585 (1994).

    Article  CAS  Google Scholar 

  25. Krahe, R. et al. Effect of myotonic dystrophy trinucleotide repeat expansion on DMPK transcription and processing. Genomics 28 (1995).

    Article  CAS  Google Scholar 

  26. Wang, J. et al. Myotonic dystrophy: evidence for a possible dominant-negative RNA mutation. Hum. Mol. Gen. 4, 599–606 (1995).

    Article  CAS  Google Scholar 

  27. Maeda, M. et al. Identification, tissue-specific expression, and subcellular localization of the 80 and 71 kDa forms of myotonic dystrophy kinase protein. J. Biol. Chem. 270, 20246–20249 (1995).

    Article  CAS  Google Scholar 

  28. Jansen, G. et al. Characterization of the myotonic dystrophy region predicts multiple protein isoform-encoding mRNAs. Nature Genet. 1, 261–266 (1992).

    Article  CAS  Google Scholar 

  29. Mahadevan, M.S. et al. Structure and genomic sequence of the myotonic dystrophy (DM kinase). Gene 2, 299–304 (1993).

    CAS  Google Scholar 

  30. Kamps, M.R., Taylor, S.S. & Sefton, B.M. Direct evidence that oncogenic tyrosine kinases and cyclic AMP-dependent protein kinases have homologous ATP binding sites. Nature 310, 589–592 (1984).

    Article  CAS  Google Scholar 

  31. Hanks, S.K., Quinn, A.M. & Hunter, T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241, 42–52 (1988).

    Article  CAS  Google Scholar 

  32. Sacco, P., Jones, D.A., Dick, J.R.T. & Vrbova, G. Contractile properties and susceptibility to exercise induced damage of normal and mdx tibialis anterior muscle. Clin. Sci. 82, 227–336 (1992).

    Article  CAS  Google Scholar 

  33. Burke, R.E. Physiology of Motor Units in Myology 2nd. ed. (eds. Andrew G. Engel & Clara Franzini-Armstrong) 1, 464–484 (McGraw-Hill Inc., New York 1994).

  34. Bailce-Gordon, R.J. & Lichtman, J.W. In vivo visualization of the growth of pre and postsynaptic elements of mouse neuromuscular junctions. J. Neurosci. 10, 894–908 (1990).

    Article  Google Scholar 

  35. Wernig, A. & Herrera, A.A. Sprouting and remodelling at the nerve-muscle junction. Prog. Neurobiol. 7, 251–291 (1986).

    Article  Google Scholar 

  36. Morgan-Hughes, J.A. Mitochondrial diseases in Myology 2nd. ed. (eds. Andrew G. Engel and Clara Franzini-Armstrong) 1610–1660 (McGraw-Hill Inc., New York 1994).

  37. Moss, F.P. & Leblond, C.P. Satellite cells as a source of nuclei in muscles of growing rats. Anat Rec. 170, 421–436 (1970).

    Article  Google Scholar 

  38. Campion, D.R. The muscle satellite cell: A review. Int. Rev. Cytol. 87, 225–251 (1984).

    Article  CAS  Google Scholar 

  39. Grounds, M.D., Garrett, K., Lai, M.C., Wright, W.E. & Beilharz, M.W. Identification of skeletal muscle precursor cells in vivo by use of MyoD and myogenin probes. Cell Tissue Res. 267, 99–104 (1992).

    Article  CAS  Google Scholar 

  40. Koishi, K., Zhang, M., McLennan, I.S. & Haris, A.J. MyoD protein accumalates in satellite cells and is neurally regulated in regenerating myotubes and skeletal muscle fibers. Developmental Dynamics 202, 244–254 (1995).

    Article  CAS  Google Scholar 

  41. Beilharz, M.W., Lareu, R.R., Garrett, K.L., Grounds, M.D. & Fletcher, S. Quantitation of muscle precursor cell activity in skeletal muscle by northern analysis of MyoD and Myogenin expression: Application to dystrophic (mdx) mouse model. Mol. and Cell. Neurosciences 3, 326–331 (1992).

    Article  CAS  Google Scholar 

  42. Gambke, B. & Rubinstein, N.A. A monoclonal antibody to embryonic myosin heavy chain of rat skeletal muscle. J. Biol. Chem. 259, 12092–12100 (1984).

    CAS  PubMed  Google Scholar 

  43. Bancroft, J.D. & Stevens, A. Theory and Practice of Histological Techniques. (1990).

  44. Casanova, G. & Jerusalem, F. Myopathology of myotonic dystrophy. A morphometric study. Acta Neuropathol 45, 231 (1979).

    Article  CAS  Google Scholar 

  45. Anderson, J.E., Ovalle, W.K. & Bressler, B.H., Electron Microscopic and Autoradiographic Characterization of Hindlimb Muscle Regeneration in mdx Mouse. Anat. Rec. 219, 243–257 (1987).

    Article  CAS  Google Scholar 

  46. Carnwath, J.W. & Shotton, D.M. Muscular dystrophy in the mdx mouse: Histopathology of the soleus and extensor digitorum longus muscles. J. Neurol. Sci. 80, 39–54 (1987).

    Article  CAS  Google Scholar 

  47. Fitzsimons, R.B. & Hoh, J.F.Y. Embryonic and foetal myosins in human skeletal muscle: the presence of foetal myosins in Duchenne muscular dystrophy and infantile spinal muscular atrophy. J. Neurol. Sci. 52, 367–384 (1981).

    Article  CAS  Google Scholar 

  48. Karsch-Mizrachi, I., Travis, M., Blau, H. & Leinwald, L.A. Expression and DNA sequence of a human embryonic skeletal muscle myosin heavy chain gene. Nuc. Acids. Res. 17, 6167–6179 (1989).

    Article  CAS  Google Scholar 

  49. McComas, A.J., Campbell, M.J. & Sica, R.E.P. Electrophysiological study of dystrophica myotonica. J. Neurol. Neurosurg. Psychiat. 34, 132–139 (1971).

    Article  CAS  Google Scholar 

  50. Belanger, A.Y. & McComas, A.J. Contractile properties of muscles in myotonic dystrphy. J. Neuro Neurosurg. Psychiat. 46, 625–631 (1983).

    Article  CAS  Google Scholar 

  51. Taylor, R.G., Abresch, R.T., Lieberman, J.S., Fowler, W.MN. & Entrikin, R.K. In vivo quantification of muscle contractility in humans: healthy subjects and patients with myotonic muscular dystrophy. Arch. Phys. Med. Rehabil. 73, 233–236 (1992).

    Article  CAS  Google Scholar 

  52. Salvatori, S., Biral, D., Furlan, S. & O., M. Identification and localization of the myotonic dystrophy gene product in skeletal and cardiac muscles. Biochem. Biophys. Res. Commun. 203, 1365–1370 (1994).

    Article  CAS  Google Scholar 

  53. Dunne, P.W., Ma, L., Casey, D.L., Harati, Y. & Epstein, H.F. Localization of myotonic dystrophy protein kinase in skeletal muscle and its alteration with disease. Cell Motility and the Cytoskeleton 33 1995).

    Google Scholar 

  54. Timchenko, L. et al. Full-length myotonin protein kinase (72 KDa) displays serine kinase activity. Proc. Natl. Acad. Sci. USA 92, 5366–5370 (1995).

    Article  CAS  Google Scholar 

  55. Petrof, B.J., Shrager, J.B., Stedman, H.H., Kelly, A.M. & Sweeny, H.L. Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc. Natl. Acad. Sci. USA 90, 3710–3714 (1993).

    Article  CAS  Google Scholar 

  56. Dubowitz, V., Muscle Biopsy 2nd. ed. (W.B. Saunders, 1985).

    Google Scholar 

  57. Aleu, F.P. & Afifi, A.K. Ultrastructure of muscle in myotonic dystrophy. Am. J. Pathol. 45, 221–231. (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Johnson, A.G. Alteration of the Z lines and I-band myofilaments in human skeletal muscle. Arch Neuropathol (Berlin) 12, 218–226 (1969).

    Article  CAS  Google Scholar 

  59. Johnson, A.G. & Woolf, A.L. Abnormal sarcolemmal nuclei encountered in several cases of dystrophica myotonica. Acta neuropath. (Berl.) 12, 183–188 (1969).

    Article  CAS  Google Scholar 

  60. Fardeau, M. Ultrastructural lesions in progressive muscular dystrophies. A critical study of their specificity. In: J.N. Walton, N. Canal and G. Scarlata eds: Muscle Diseases, Amsterdam. Experta Medica, 98–108 (1970).

    Google Scholar 

  61. Schotland, D.L. An electron microscopic investigation of myotonic dystrophy. J. Neuropath. & Exper. Neurol. 29, 241–253 (1970).

    Article  CAS  Google Scholar 

  62. Bulfield, G., Siller, W.G., Wright, P.A. & Moore, K.J. X-chromosome-linked muscular dystrophy (mdx) in the mouse. Proc. Natl. Acad. Sci. USA 81, 1189–1192 (1984).

    Article  CAS  Google Scholar 

  63. Rastinjad, F. & Blau, H. Genetic complementation reveals a novel regulatory role for 3′ untranslated region in growth and differentiation. Cell 72, 903–917 (1993).

    Article  Google Scholar 

  64. Wang, Y.-H., Amirhaeri, S., Kang, S., Wells, R.D. & Griffith, J.D. Preferential nucleosome assembly at DNA triplet repeats from the myotonic dystrophy gene. Science 265, 1709–1712 (1994).

    Article  Google Scholar 

  65. Wang, Y.-H. & Griffith, J. Expanded CTG triplet blocks from the myotonic dystrophy gene create the strongest known natural nucleosome positioning elements. Genomics 25, 570–573 (1995).

    Article  CAS  Google Scholar 

  66. Boucher, C.A. et al. A novel homeodomain encoding gene is associated with a large CpG island interrupted by the myotonic dystrophy unstable (CTG)n repeat. Hum. Mol. Genet. 4, 1919–1925 (1995).

    Article  CAS  Google Scholar 

  67. Shaw, D.J. et al. Genomic organization and transcriptional units at the myotonic dystrophy locus. Genomics 18, 673–679 (1993).

    Article  CAS  Google Scholar 

  68. Tybulewicz, V.L.J., Crawford, C.E., Jackson, P.K., Bronson, R.T. & Mulligan, R.C. Neonatal lethality and lymhopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65, 1153–1163 (1991).

    Article  CAS  Google Scholar 

  69. Mansour, S.L., Thomas, K.R. & Capecchi, M.R. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem-cells: a general strategy for targeting mutations to nonselectable genes. Nature 336, 348–352 (1988).

    Article  CAS  Google Scholar 

  70. Laird, R.W. et al. Simplified mammalian DNA isolation procedure. Nucl. Acids Res. 19, 4293 (1991).

    Article  CAS  Google Scholar 

  71. Hogan, B., Constantini, F. & Lacy, E. Manipulating the Mouse Embryo: A Laboratory Manual. (Cold Spring Harbor Laboratory Press, 1986).

    Google Scholar 

  72. Davis, R.L., Weintraub, H. & Lassar, A.B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000 (1987).

    Article  CAS  Google Scholar 

  73. Braun, T.G. et al. Differential expression of myogenic determination genes in muscle cells: possible autoactivation by the Myf gene products. EMBO J. 8, 3617–3625 (1989).

    Article  CAS  Google Scholar 

  74. Braun, T., Buschhausen-Denker, G., Bober, E., Tannich, E. & Arnold, H.-H. A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO. J. 8, 701–709 (1989).

    Article  CAS  Google Scholar 

  75. Rhodes, S.J. & Konieczny, S.F. Identification of MRF4: a new member of the muscle regulatory factor gene family. Genes Dev. 3, 2050–2061 (1989).

    Article  CAS  Google Scholar 

  76. Shackleford, G.M. & Varmus, H.E. Expression of the proto-oncogene int1 is restricted to post meiotic male germ cells and the neural tube of midgestational embryos. Cell 50, 89–95 (1987).

    Article  CAS  Google Scholar 

  77. Close, K. Dynamic properties of mammalian skeletal muscle. Phys. Rev. 52, 129–197 (1972).

    CAS  Google Scholar 

  78. Schiaffino, S., Gorza, L., Dones, I., Cornelio, F. & Sartore, S. Fetal myosin immunoreactivity in human dystrophic muscle. Muscle Nerve 9, 51–58

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, S., Smith, D., Rich, M. et al. Mice lacking the myotonic dystrophy protein kinase develop a late onset progressive myopathy. Nat Genet 13, 325–335 (1996). https://doi.org/10.1038/ng0796-325

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0796-325

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing