Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The molecular basis of hypodactyly (Hd): a deletion in Hoxa13 leads to arrest of digital arch formation

Abstract

Hypodactyly (Hd) is a semidominant mutation in mice that maps in a genetic interval overlapping the Hoxa cluster. The profound deficiency of digital arch structures in Hd/Hd mice is consistent with a defect in a gene activated late in limb morphogenesis. We have determined the structure of the Hoxa13 gene and describe a 50–base pair deletion in the first exon of the Hd allele that probably arose from unequal recombination or misalignment between triplet repeats. It is predicted that no Hoxa13 protein is made from Hd mRNA. The hypodactyly limb phenotype is similar to that of Hoxd13–deficient mice in sharing defects along multiple axes and alterations in cartilage maturation; however, the overall effects on digital arch formation are more severe in Hd/Hd mice. Our results confirm the critical role of AbdB–like Hox genes in the development of the autopod, and add to the spectrum of mutations involving triplet repeats

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Laufer, E., Nelson, C.E., Johnson, R.L., Morgan, B.A. & Tabin, C. Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 79, 993–1003 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Tabin, C. The initiation of the limb bud: growth factors, Hox genes, and retinoids. Cell 80, 671–674 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Cohn, M.J., Izpisúa-Belmonte, J.C., Abud, H., Heath, J.K. & Tickle, C. Fibroblast growth factors induce additional limb development from the flank of chick embryos. Cell 80, 739–746 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Duboule, D. The vertebrate limb: a model system to study the Hox/HOM gene network during development and evolution. Bio Essays. 14, 375–384 (1992).

    CAS  Google Scholar 

  5. Yokouchi, Y., Sasaki, H. & Kuroiwa, A. Homeobox gene expression correlated with the bifurcation process of limb cartilage development. Nature 353, 443–445 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Haack, H. & Gruss, P. The establishment of murine Hox-7 expression domains during patterning of the limb. Dev. Biol. 157, 410–422 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Small, K.M. & Potter, S.S. Homeotic transformations and limb defects in Hoxa11 mutant mice. Genes Dev. 7, 2318–2328 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Satokata, I., Benson, G. & Maas, R. Sexually dimorphic sterility phenotypes in Hoxa10-deficient mice. Nature 374, 460–463 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Rijli, F.M. et al. Cryptorchidism and homeotic transformations of spinal nerves and vertebrae in Hoxa-10 mutant mice. Proc. Natl. Acad. Sci. USA. 92, 8185–8189 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hsieh-Li, H.M. et al. Hoxa11 structure, extensive antisense transcription, and function in male and female fertility. Development 121, 1373–1385 (1995).

    CAS  PubMed  Google Scholar 

  11. Dolle, P. et al. Disruption of the Hoxd-13 gene induces localized heterochrony leading to mice with neotenic limbs. Cell 75, 431–441 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Davis, A.R., White, D.R., Hsieh-Li, H.M., Potter, S.S. & Capecchi, M.R. Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11 . Nature 375, 791–795 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Davis, A.P. & Capecchi, M.R. Axial homeosis and appendicular skeleton defects in mice with a targeted disruption of hoxd-11. Development 120, 2187–2198 (1994).

    CAS  PubMed  Google Scholar 

  14. Yokouchi, Y. et al. Misexpression of Hoxa-13 induces cartilage homeotic transformation and changes cell adhesiveness in chick limb buds. Genes Dev. 9, 2509–2522 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Morgan, B.A. & Tabin, C. Hox genes and growth: early and lates roles in limb bud morphogenesis. Development Suppl. 181–186 (1994).

  16. Roberts, D.J. & Tabin, C. The genetics of human limb development. Am. J. Hum. Gen. 55, 1–6 (1994).

    CAS  Google Scholar 

  17. Redline, R.W., Neish, A., Holmes, L.B. & Collins, T. Biology of disease: homeobox genes and congenital malformations. Lab. Invest. 66, 659–670 (1992).

    CAS  PubMed  Google Scholar 

  18. Krumlauf, R. Hox genes in vertebrate development. Cell 78, 191–201 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Muragaki, Y., Mundtos, S., Upton, J. & Olsen, B.R. Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13. Science 272, 548–551 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Hummel, K., Hypodactyly, a semidominant lethal mutation in mice. J. Heread. 61, 219–220 (1970).

    Article  CAS  Google Scholar 

  21. Innis, J.W., Kazen-Giltespie, K., Post, L.C. & McGorman, J.M. High-resolution genetic mapping of the hypodactyly (Hd) locus on mouse chromosome 6. Mamm. Genome 7, 2–5 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Innis, J.W. et al. Orientation of the Hoxa complex and placement of the Hd locus distal to Hoxa2 on mouse chromosome 6. Mamm. Genome 7, 216–217 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Gardiner, D.M., Blumberg, B., Komine, Y., & Bryant, S.V. Regulation of Hoxa expression in developing and regenerating axolotl limbs. Development 121, 1731–1741 (1995).

    CAS  PubMed  Google Scholar 

  24. Rogina, B. & Uphott, W.B. Cloning of full coding chicken cDNAs for the homeobox-containing gene Hoxd-13 . Nucl. Acids Res. 21, 1316 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. van der Hoeven, F., Sordino, P., Fraudeau, N., Izpisùa-Belmonte, J.-C. & Duboule, D. Genbank ♯X87752, direct submission. (1995).

  26. Kozak, M. Point mutations close to the AUG initiator codon affect the efficiency of translation of rat preproinsulin in vivo . Nature 308, 241–246 (1984).

    Article  CAS  PubMed  Google Scholar 

  27. Kozak, M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44, 283–293 (1986).

    Article  CAS  PubMed  Google Scholar 

  28. Duboule, D. Guidebook to the Homeobox Genes . (Oxford University Press, New York, 1994).

  29. Han, K. & Manley, J.L. Transcriptional repression by the Drosophila Even-skipped protein: definition of a minimal repression domain. Genes Dev. 7, 492–503 (1993).

    Article  Google Scholar 

  30. Han, K. & Manley, J.L. Functional domains of the Drosophila Engrailed protein. EMBO J. 12, 2723–2733 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Licht, J.D., Grossel, M.J., Figge, J. & Hansen, U.M., Drosophila Kruppel protein is a transcriptional represser. Nature 346, 76–79 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Dover, G. Slippery DNA runs on and on and on … Nature Genet. 10, 254–256 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Kunkel, T.A. Slippery DNA and diseases. Nature 365, 207–208 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Shubin, N.H. & Alberch, P.A morphogenetic approach to the origin and basic organization of the tetrapod limb. Evol. Biol. 20, 319–387 (1986).

    Google Scholar 

  35. Oster, G.F., Murray, J.D. & Maini, P.K. A model for chondrogenic condensations in the developing limb: the role of extracellular matrix and cell tractions. J. Embryol. Exp. Morph. 89, 93–112 (1985).

    CAS  PubMed  Google Scholar 

  36. Condie, B.G. & Capecchi, M.R. Mice with targeted disruptions in the paralogous genes hoxa-3 and hoxd-3 reveal synergistic interactions. Nature 370, 304–307 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Rancourt, D.E., Tsuzuki, T. & Capecchi, M.R. Genetic interaction between hoxb-5 and hoxb-6 is revealed by nonaltelic noncomplementation. Genes Dev. 9, 108–122 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Favier, B., Meur, M.L., Chambon, P. & Dollé, P. Axial skeleton homeosis and forelimb malformations in Hoxd-11 mutant mice. Proc. Natl. Acad. Sci. USA 92, 310–314 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dollé, P., Izpisúa-Belmonte, J.-C., Boncinelli, E. & Duboule, D., The Hox-4.8 gene is localised at the 5′ extremity of the HOX-4 complex and is expressed in the most posterior parts of the body during development. Mech. Dev. 36, 3–14 (1991).

    Article  PubMed  Google Scholar 

  40. Yokouchi, Y., Sakiyama, J. & Kuroiwa, A. A Coordinated expression of Abd-B subfamily genes of the Hoxa cluster in the developing digestive tract of chick embryo. Dev. Biol. 169, 76–89 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Copp, A.J. Death before birth: clues from gene knockouts and mutations. Trends Genet. 11, 87–93 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Bates, G. & Lehrach, H. Trinucleotide repeat expansions and human genetic disease. Bio Essays 16, 277–284 (1994).

    CAS  Google Scholar 

  43. Lupski, J.R., Roth, J.R. & Weinstock, G.M. Chromosomal duplications in bacteria, fruit flies, and humans. Am. J. Hum. Gen. 58, 21–27 (1996).

    CAS  Google Scholar 

  44. Tautz, D. & Schlötterer, C. Simple Sequences. Curr. Opin. Gen. Dev. 4, 832–837 (1994).

    Article  CAS  Google Scholar 

  45. Magli, M.C., Barba, P., Celetti, A., Vita, G.d. & Cillo, C. Coordinate regulation of HOX genes in human hematopoietic cells. Proc. Natl. Acad. Sci. USA 88, 6348–6352 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Redline, R.W., Hudock, P., MacFee, M. & Patternson, P. Expression of AbdB-type homeobox genes in human tumors. Lab. Invest. 71, 663–670 (1994).

    CAS  PubMed  Google Scholar 

  47. Stern, A.M. et al. The hand–foot–uterus syndrome. J. Pediat. 77, 109–116 (1970).

    Article  CAS  PubMed  Google Scholar 

  48. Poznanski, A.K., Stern, A.S. & Gall, J.C. Radiographic findings in the hand–foot–uterus syndrome(HFUS). Radiology 95, 129–134 (1970).

    Article  CAS  PubMed  Google Scholar 

  49. Halal, F., The Hand–foot–genital(hand–foot–uterus) syndrome: family report and update. Am. J. Med. Gen. 30, 793–803 (1988).

    Article  CAS  Google Scholar 

  50. Kimmel, C.A. & Trammell, C. A rapid procedure for routine double staining of cartilage and bone in fetal and adult animals. Stain Technol. 56, 271–273 (1981).

    Article  CAS  PubMed  Google Scholar 

  51. Ausubel, F.M. et al. Current protocols in molecular biology. (Greene Publishing Associates and Wiley-lnterscience, 1991).

  52. Valdes, J.M., Tagle, D., Elmer, L. & Collins, F. A simple non-radioactive method for diagnosis of Huntington's disease. Hum. Mol. Genet. 2, 633–634 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mortlock, D., Post, L. & Innis, J. The molecular basis of hypodactyly (Hd): a deletion in Hoxa13 leads to arrest of digital arch formation. Nat Genet 13, 284–289 (1996). https://doi.org/10.1038/ng0796-284

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0796-284

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing