Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gametic and somatic tissue–specific heterogeneity of the expanded SCA1 CAG repeat in spinocerebellar ataxia type 1

Abstract

Spinocerebellar ataxia type 1 is associated with expansion of an unstable CAG repeat within the SCA1 gene. Male gametic heterogeneity of the expanded repeat is demonstrated using single sperm and low–copy genome analysis. Low–copy genome analysis of peripheral blood also reveals somatic heterogeneity of the expanded SCA1 allele, thus establishing mitotic instability at this locus. Comparative analysis of a large normal allele and a small affected allele suggests a role of midstream CAT interspersions in stabilizing long (CAG)n stretches. Within the brain, tissue–specific mosaicism of the expanded allele is also observed. The differences in SCA1 allele heterogeneity between sperm and blood and within the brain parallels the findings in Huntington disease, suggesting that both disorders share a common mechanism for tissue–specific instability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Greenfield, J.G. The spino-cerebellar degenerations (Charles C. Thomas, Springfield, Illinois, 1954).

  2. Zoghbi, H.Y. The spinocerebellar degenerations, in Current Neurology (ed. Appel, S.H.) 121–144 (Mosby-Year Book, St-Louis, 1991).

    Google Scholar 

  3. Schut, J.W. Hereditary ataxia: clinical study through six generations. Arch. Neurol. Psychiat 63, 535–567 (1954).

    Article  Google Scholar 

  4. Currier, R.D., Glover, G., Jackson, J.K. & Tipton, A.C. Spinocerebellar ataxia: study of a large kindred. Neurology 22, 1040–1043 (1972).

    Article  CAS  PubMed  Google Scholar 

  5. Orr, H.T. et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nature Genet. 4, 221–226 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Banfi, S. et al. Identification and characterization of the gene causing type 1 spinocerebellar ataxia. Nature Genet. 7, 513–520 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Matilla, T. et al. Presymptomatic analysis of spinocerebellar ataxia type 1 (SCA1) via the expansion of the SCA1 CAG-repeat in a large pedigree displaying anticipation and parental male bias. Hum. molec. Genet. 2, 2123–2128 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Jodice, C. et al. Effect of trinucleotide repeat length and parental sex on phenotypic variation in spinocerebellar ataxia 1. Am. J. hum. Genet. 54, 959–965 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ranum, L.P.W. et al. Molecular and clinical correlations in spinocerebellar ataxia type 1 (SCA1): Evidence for familial effects on the age at onset. Am. J. hum. Genet. 55, 244–252 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chung, M. et al. Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type 1. Nature Genet. 5, 254–258 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Telenius, H. et al. Somatic and gonadal mosaicism of the Huntington disease gene CAG repeat in brain and sperm. Nature Genet. 6, 409–414 & 7, 113 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Weber, J.L. & Wong, C. Mutation of human short tandem repeats. Hum. molec. Genet. 2, 1123–1128 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Willems, P.J. Dynamic mutations hit double figures. Nature Genet. 8, 213–215 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Huntington's Disease Collabrative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  15. Andrew, S.E. et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nature Genet. 4, 387–392 (1993).

    Article  Google Scholar 

  16. Duyao, M. et al. Trinucleotide repeat length instability and age of onset in Huntington disease. Nature Genet. 4, 387–392 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Goldberg, Y.P. et al. Molecular analysis of new mutations for Huntington's disease: intermediate alleles and sex of origin effects. Nature Genet. 5, 174–179 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Norremolle, A. et al. Trinucleotide repeat elongation in the Huntington gene in Huntington's disease patientsfrom 71 Danish families. Hum. molec. Genet. 2, 1475–1476 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Snell, R.G. et al. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. Nature Genet. 4, 393–397 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Zuhlke, C. et al. Expansion of the (CAG)n repeat causing Huntington's disease in 352 patients of German origin. Hum. molec. Genet. 2, 1467–1469 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Koide, R. et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nature Genet. 6, 9–13 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Nagafuchi, S. et al. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nature Genet. 6, 14–18 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Kawaguchi, Y. et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nature Genet. 8, 221–228 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Nagafuchi, S. et al. Structure and expression of the gene responsible for the triplet repeat disorder, dentatorubral and pallidoluysian atrophy (DRPLA). Nature Genet. 8, 177–182 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. La Spada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E. & Fischbeck, K.H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Strong, T.V. et al. Widespread expression of the human and rat Huntington's disease gene in brain and non-neuronal tissues. Nature Genet. 5, 259–265 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Burke, J.R. et al. The Haw River syndrome: dentatorubropallidoluysian atrophy (DRPLA) in an African-American family. Nature Genet. 7, 521–524 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Rubinsztein, D.C., Leggo, J., Amos, W., Barton, D.E. & Ferguson-Smith, M.A. Myotonic dystrophy CTG repeats and the associated insertion/deletion polymorphism in human and primate populations. Hum. molec. Genet. 3, 2031–2035 (1994).

    CAS  PubMed  Google Scholar 

  29. Kunst, C.B. & Warren, S.T. Cryptic and polar variation of the fragile X repeat could result in predisposing normal alleles. Cell 77, 853–861 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Eichler, E.E. et al. Length of uninterrupted CGG repeats determines instability in the FMR1 gene. Nature Genet. 8, 88–94 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Nelson, D.L. & Warren, S.T. Trinucleotide repeat instability: when and where? Nature Genet. 4, 107–108 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Warren, S.T. & Nelson, D.L. Advances in molecular analysis of fragile X syndrome. Am. med. Assoc. 271, 536–542 (1994).

    Article  CAS  Google Scholar 

  33. Nelson, D.L. Six human genetic disorders involving mutant trinucleotide repeats. in Genome analysis vol 7: genome rearrangement and stability, 1–24 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1993).

    Google Scholar 

  34. MacDonald, M.E. et al. Gametic but not somatic instability of CAG repeat length in Huntington's disease. J. med. Genet. 30, 982–986 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zuhlke, C., Riess, O., Bockel, B., Lange, H. & Thies, U. Mitotic stability and meiotic variability of the (CAG)n repeat in the Huntington disease gene. Hum. molec. Genet. 2, 2063–2067 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Vonsattell, J-P. et al. Neuropathological classification of Huntington's disease. J. Neuropath, exp. Neurol. 44, 559–577 (1985).

    Article  Google Scholar 

  37. Chong, S.S., Kristjansson, K., Cota, J., Handyside, A.H. & Hughes, M.R. Preimplantation prevention of X-linked disease: reliable and rapid sex determination of single human cells by restriction analysis of simultaneously amplified ZFX and ZFY sequences. Hum. molec. Genet. 2, 1187–1191 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, L. et al. Whole genome amplification from a single cell: implications for genetic analysis. Proc. natl. Acad. Sci. U.S.A. 89, 5847–5851 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jeffreys, A.J. et al. Complex gene conversion events in germline mutation at human minisatellites. Nature Genet. 6, 136–145 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chong, S., McCall, A., Cota, J. et al. Gametic and somatic tissue–specific heterogeneity of the expanded SCA1 CAG repeat in spinocerebellar ataxia type 1. Nat Genet 10, 344–350 (1995). https://doi.org/10.1038/ng0795-344

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0795-344

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing