Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Severe growth defect in mouse cells lacking the telomerase RNA component

Abstract

The ribonucleoprotein enzyme telomerase synthesizes telomeric DNA onto chromosome ends1. Telomere length is maintained, by the presence of telomerase activity, in the vast majority of primary tumours and stem cells2,3, suggesting that telomere maintenance is essential for cellular immortalization. Recently, the telomerase RNA component in human4 and mouse5 (TERC and Terc, respectively), a telomerase-associated protein TEP1/TLP1 (refs 6,7) and the human catalytic subunit protein TERT (Refs 8,9) have been identified. To examine the role of telomerase in telomere maintenance and cellular viability, we established Terc-deficient embryonic stem (ES) cells. It is known that telomerase activity is absent in cells from Terc-knockout mice10. Although the study showed that telomere shortening was observed in the Terc-deficient cells from first to six generation animals, whether telomerase-dependent telomere maintenance was essential for cellular viability remained to be elucidated. To address this issue, we examined Terc-deficient ES cells under long-term culture conditions. Accompanying the continual telomere shortening, the growth rate of Terc-deficient ES cells was gradually reduced after more than 300 divisions. An impaired growth rate was maintained to approximately 450 divisions, and then cell growth virtually stopped. These data clearly show that telomerase-dependent telomere maintenance is critical for the growth of mammalian cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of Terc-/- ES cells.
Figure 2: Growth of Terc-/- ES cells in long-term culture.
Figure 3: Telomere shortening in the Terc-/- cells.
Figure 4: FISH analysis of Terc-/- telomeres after long-term culture.

Similar content being viewed by others

References

  1. Greider, C.W. Telomere length regulation. Annu. Rev. Biochem. 65, 337–365 (1996)

    Article  CAS  Google Scholar 

  2. Harley, C.B. et al. Telomerase, cell immortality, and cancer. Cold Spring Harbor Symp. Quant. Biol. 59, 307–315 (1994)

    Article  CAS  Google Scholar 

  3. Kim, N.W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994)

    Article  CAS  Google Scholar 

  4. Feng, J. et al. The RNA component of human telomerase. Science 269, 1236–1241 (1995)

    Article  CAS  Google Scholar 

  5. Blasco, M.A. Funk, W. Villeponteau, B. Greider, C.W. Functional characterization and developmental regulation of mouse telomerase RNA. Science 269, 1267–1270 (1995)

    Article  CAS  Google Scholar 

  6. Harrington, L. et al. A mammalian telomerase-associated protein. Science 275, 973–977 (1997)

    Article  CAS  Google Scholar 

  7. Nakayama, J.-I. Saito, M. Nakayama, H. Matsuura, A. Ishikawa, F. TLP1: a gene encoding a protein component of mammalian telomerase is a novel member of WD repeats family. Cell 88, 875–884 (1997)

    Article  CAS  Google Scholar 

  8. Nakayama, T.M. et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 277, 955–959 ( 1997)

    Article  Google Scholar 

  9. Meyerson, M. et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90, 785–795 (1997)

    Article  CAS  Google Scholar 

  10. Blasco, M.A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34 (1997)

    Article  CAS  Google Scholar 

  11. Kipling, D. Cooke, H.J. Hypervariable ultra-long telomeres in mice. Nature 347, 400–402 (1990)

    Article  CAS  Google Scholar 

  12. Zijlmans, J.M.J.M. et al. Telomerase in the mouse have large inter-chromosomal variations in the number of T2AG3 repeats. Proc. Natl. Acad. Sci. USA 94, 7423–7428 (1997)

    Article  CAS  Google Scholar 

  13. Prowse, K.R. Greider, C.W. Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc. Natl. Acad. Sci. USA 92, 4818–4822 ( 1995)

    Article  CAS  Google Scholar 

  14. Singer, M.S. Gottschling, D.E. TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266, 404–409 (1994)

    Article  CAS  Google Scholar 

  15. Lundblad, V. Szostak, J.W. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57, 633 –643 (1989)

    Article  CAS  Google Scholar 

  16. Lundblad, V. Blackburn, E.H. An alternative pathway for yeast telomere maintenance rescues est1-senescence. Cell 73, 347–360 (1993)

    Article  CAS  Google Scholar 

  17. McEachern, M.J. Blackburn, E.H. Cap-prevented recombination between terminal telomeric repeat arrays (telomere CPR) maintains telomeres in Kluyveromyces lactis lacking telomerase. Genes Dev. 10, 1822–1834 (1996)

    Article  CAS  Google Scholar 

  18. Bryan, T.M. Englezou, A. Gupta, J. Bacchetti, S. Reddel, R.R. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 14, 4240–4248 (1995)

    Article  CAS  Google Scholar 

  19. Bryan, T.M. Engezou, A. Dalla-Pozza, L. Dunham, M.A. Reddel, R.R. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nature Med. 3, 1271–1274 ( 1997)

    Article  CAS  Google Scholar 

  20. Weinrich, S.L. et al. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nature Genet. 17 , 498–502 (1997)

    Article  CAS  Google Scholar 

  21. Bodnar, A.G. et al. Extension of life-span by introduction of telomerase into normal human cells . Science 279, 349–352 (1998)

    Article  CAS  Google Scholar 

  22. Gorman, J.R. et al. The Igk 3´ enhancer influences the ratio of Igk versus Igl B lymphocytes . Immunity 5, 241–252 (1996)

    Article  CAS  Google Scholar 

  23. Mansour, S.L. Thomas, K.R. Capecchi, M.R. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352 ( 1988)

    Article  CAS  Google Scholar 

  24. Kanegae, Y. et al. Efficient gene activation in mammalian cells by using recombinant adenovirus expressing site-specific Cre recombinase. Nucleic Acids Res. 23, 3816–3821 (1995)

    Article  CAS  Google Scholar 

  25. Miller, S.A. Dykes, D.D. Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells . Nucleic Acids Res. 16, 1215 (1988)

    Article  CAS  Google Scholar 

  26. Radic, M.Z. Lundgren, K. Hamkalo, B.A. Curvature of mouse satellite DNA and condensation of heterochromatin. Cell 50, 1101–1108 ( 1987)

    Article  CAS  Google Scholar 

  27. Lee, H.-W. et al. Essential role of mouse telomerase in highly proliferative organs. Nature 392, 569–574 ( 1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Saito for providing the recombinant Cre adenovirus, R. Narayanan for helpful discussions and comments and M. Shio for FISH analysis.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niida, H., Matsumoto, T., Satoh, H. et al. Severe growth defect in mouse cells lacking the telomerase RNA component . Nat Genet 19, 203–206 (1998). https://doi.org/10.1038/580

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/580

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing