Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutations in the xeroderma pigmentosum group D DNA repair/transcription gene in patients with trichothiodystrophy

Abstract

DNA repair defects in the xeroderma pigmentosum (XP) group D complementation group can be associated with the clinical features of two quite different disorders; XP, a sun–sensitive and cancer–prone disorder, or trichothiodystrophy (TTD) which is characterized by sulphur–deficient brittle hair and a variety of other associated abnormalities, but no skin cancer. The XPD gene product, a DNA helicase, is required for nucleotide excision repair and recent evidence has demonstrated a role in transcription. We have now identified causative mutations in XPD in four TTD patients. The patients are all compound heterozygotes and the locations of the mutations enable us to suggest relationships between different domains in the gene and its roles in excision repair and transcription.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hoeijmakers, J.H.J. Nucleotide excision repair II: from yeast to mammals. Trends Genet. 9, 211–217 (1993).

    Article  CAS  Google Scholar 

  2. Itin, P.H. & Pittelkow, M.R. Trichothiodystrophy: review of sulfur-deficient brittle hair syndromes and association with the ectodermal dysplasias. J. Am. Acad. Dermatol., 20, 705–717 (1990).

    Article  Google Scholar 

  3. Stefanini, M. et al. Xeroderma pigmentosum (complementation group D) mutation is present in patients affected by trichothiodystrophy with photosensitivity. Hum. Genet. 74, 107–112 (1986).

    Article  CAS  Google Scholar 

  4. Stefanini, M. et al. DNA repair investigations in nine Italian patients affected by trichothiodystrophy. Mutation Res. 273, 119–125 (1992).

    Article  CAS  Google Scholar 

  5. Stefanini, M. et al. Genetic heterogeneity of the excision repair defect associated with trichothiodystrophy. Carcinogenesis 14, 1101–1105 (1993).

    Article  CAS  Google Scholar 

  6. Stefanini, M. et al. A new nucleotide excision repair gene associated with the genetic disorder trichothiodystrophy. Am. J. hum. Genet. 53, 817–821 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lehmann, A.R. and Norris, P.G. DNA repair and cancer: speculations based on studies with xeroderma pigmentosum, Cockayne's syndrome and trichothiodystrophy. Carcinogenesis, 10, 1353–1356 (1989).

    Article  CAS  Google Scholar 

  8. Weber, C.A., Salazar, E.P., Stewart, S.A. & Thompson, L.H. Molecular cloning and biological characterization of a human gene, ERCC2, that corrects the nucleotide excision repair defect in CHO UV5 cells. Molec. cell Biol. 8, 1137–1146 (1988).

    Article  CAS  Google Scholar 

  9. Lehmann, A.R. et al. Workshop on DNA repair. Mutation Res. 273, 1–28 (1992).

    Article  CAS  Google Scholar 

  10. Flejter, W.L., McDaniel, L.D., Johns, D., Friedberg, E.C. & Schultz, R.A. Correction of xeroderma pigmentosum complementation group D mutant cell phenotypes by chromosome and gene transfer: Involvement of the human ERCC2 DNA repair gene. Proc. natn. Acad. Sci. U.S.A. 89, 261–265 (1992).

    Article  CAS  Google Scholar 

  11. Weber, C.A., Salazar, E.P., Stewart, S.A. & Thompson, L.H. ERCC-2: cDNA cloning and molecular characterization of a human nucleotide excision repair gene with high homology to yeast RAD3. EMBO J. 9, 1437–1448 (1990).

    Article  CAS  Google Scholar 

  12. Murray, J.M. et al. Cloning and characterisation of the S. pombe rad 15 gene, a homologue to the S. cerevisiae RAD3 and human ERCC2 genes. Nucl. Acids Res. 20, 2673–2678 (1992).

    Article  CAS  Google Scholar 

  13. Reynolds, P.R., Biggar, S., Prakash, L. & Prakash, S. The Schizosaccharomyces pombe rhp3+ gene required for DNA repair and cell viability is functionally interchangeable with the RAD3 gene of Saccharomyces cerevisiae. Nucl. Acids Res. 20, 2327–2334 (1992).

    Article  CAS  Google Scholar 

  14. Sung, P., Prakash, L., Matson, S.W. & Prakash, S. RAD3 protein of Saccharomyces cerevisiae is a DNA helicase. Proc. natn. Acad. Sci. U.S.A. 84, 8951–8955 (1987).

    Article  CAS  Google Scholar 

  15. Sung, P. et al. Human xeroderma pigmentosum group D gene encodes a DNA helicase. Nature 365, 852–855 (1993).

    Article  CAS  Google Scholar 

  16. Schaeffer, L. et al. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260, 58–63 (1993).

    Article  CAS  Google Scholar 

  17. Drapkin, R. et al. Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II. Nature 368, 769–772 (1994).

    Article  CAS  Google Scholar 

  18. Feaver, W.J. et al. Dual roles of a multiprotein complex from S. cerevisiae in transcription and DNA repair. Cell 75, 1379–1387 (1993).

    Article  CAS  Google Scholar 

  19. Lehmann, A.R. et al. Trichothiodystrophy, a human DNA repair disorder with heterogeneity in the cellular response to ultraviolet light. Cancer Res. 48, 6090–6096 (1988).

    CAS  PubMed  Google Scholar 

  20. Broughton, B.C. et al. Relationship between pyrimidine dimers, 6-4 photoproducts, repair synthesis and cell survival: Studies using cells from patients with triohothiodystrophy. Mutation Res. 235, 33–40 (1990).

    Article  CAS  Google Scholar 

  21. Tolmie, J.L. et al. Syndromes associated with trichothiodystrophy. Clin. Dysmorphol. 3, 1–14 (1994).

    Article  CAS  Google Scholar 

  22. King, M.D., Gummer, C.L. & Stephenson, J.B.P. Trichothiodystrophy-neurotrichocutaneous syndrome of Pollitt: a report of two unrelated cases. J. med. Genet. 21, 286–289 (1984).

    Article  CAS  Google Scholar 

  23. Cooper, D.N. & Krawzcak, M. The mutational spectrum of single base-pair substitutions causing human genetic disease in patterns and predictions. Hum. Genet. 85, 55–74 (1990).

    Article  CAS  Google Scholar 

  24. Streisinger, G. et al. Frameshift mutations and the genetic code. Cold Spring Harbour Symp. Quant. Biol. 31, 77–84 (1966).

    Article  CAS  Google Scholar 

  25. Bailly, V., Sung, P., Prakash, L. & Prakash, S. DNA.RNA helicase activity of RAD3 protein of Saccharomyces cerevisiae. Proc. natn. Acad. Sci. U.S.A. 88, 9712–9716 (1991).

    Article  CAS  Google Scholar 

  26. Naegeli, H., Bardwell, L., Harosh, I. & Friedberg, E.C. Substrate specificity of the Rad3 ATPase/DNA helicase of Saccharomyces cerevisiae and binding of Rad3 protein to nucleic acids. J. biol. Chem. 267, 7839–7844 (1992).

    CAS  PubMed  Google Scholar 

  27. Friedberg, E.C. Deoxyribonucleic acid repair in the yeast Saccharomyces cerevisiae. Microbiol. Rev. 52, 70–102 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Naumovski, L. & Friedberg, E.C. Analysis of the essential and excision repair functions of the RAD3 gene of Saccharomyces cerevisiae by mutagenesis. Molec. cell. Biol. 6, 1218–1227 (1986).

    Article  CAS  Google Scholar 

  29. Song, J.M., Montelone, B.A., Siede, W. & Friedberg, E.C. Effects of multiple yeast rad3 mutant alleles on UV sensitivity, mutability, and mitotic recombination. J. Bacteriology 172, 6620–6630 (1990).

    Article  CAS  Google Scholar 

  30. Gorbalenya, A.E., Koonin, E.V., Donchenko, A.P. & Blinov, V.M. Two related super families of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucl. Acids Res. 17, 4713–4730 (1989).

    Article  CAS  Google Scholar 

  31. Harosh, I. & Deschavanne, P. The RAD3 gene is a member of the DEAH family RNA helicase-like protein. Nucl. Acids Res. 19, 6331 (1991).

    Article  CAS  Google Scholar 

  32. Sung, P., Higgins, D., Prakash, L. & Prakash, S. Mutation of lysine-48 to arginine in the yeast RAD3 protein abolishes its ATPase and DNA helicase activities but not the ability to bind ATP. EMBO J., 7, 3263–3269 (1988).

    Article  CAS  Google Scholar 

  33. Kovalic, D., Kwak, J.-H. & Weisblum, B. General method for direct cloning of DNA fragments generated by the polymerase chain reaction. Nucl. Acids Res. 19, 4560 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broughton, B., Steingrimsdottir, H., Weber, C. et al. Mutations in the xeroderma pigmentosum group D DNA repair/transcription gene in patients with trichothiodystrophy. Nat Genet 7, 189–194 (1994). https://doi.org/10.1038/ng0694-189

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0694-189

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing