Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Localization of the gene for familial dysautonomia on chromosome 9 and definition of DNA markers for genetic diagnosis

Abstract

Familial dysautonomia (DYS), the Riley–Day syndrome, is an autosomal recessive disorder characterized by developmental loss of neurons from the sensory and autonomic nervous system. It is limited to the Ashkenazi Jewish population, where the carrier frequency is 1 in 30. We have mapped the DYS gene to chromosome 9q31–q33 by linkage with ten DMA markers in 26 families. The maximum lod score of 21.1 with no recombinants was achieved with D9S58. This marker also showed strong linkage disequilibrium with DYS, with one allele present on 73% of affected chromosomes compared to 5.4% of controls (χ=3142, 15 d.f. p<0.0001). D9S53 and D9S105 represent the closest flanking markers for the disease gene. This localization will permit prenatal diagnosis of DYS in affected families and aid the isolation of the disease gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Riley, C.M., Day, R.L., Greely, D. & Langford, W.S. Central autonomic dysfunction with defective lacrimation. Pediatrics 3, 468–477 (1949).

    CAS  PubMed  Google Scholar 

  2. Axelrod, F.B. & Pearson, J. Congenital sensory neuropathies. Diagnostic distinction from familial dysautonomia. Am. J. Dis. Child. 138, 947–954 (1984).

    Article  CAS  PubMed  Google Scholar 

  3. Axelrod, F.B. Familial dysautonomia and other congenital sensory and autonomic neuropathies. Cellular and Molecular Biology of Neuronal Development (ed. Black I.B.) 331–340 (Plenum Press, New York, 1984).

    Chapter  Google Scholar 

  4. Brunt, P.W. & McKusick, V.A. Familial dysautonomia, a report of genetic and clinical studies, with a review of the literature. Medicine 49, 343–374 (1970).

    Article  CAS  PubMed  Google Scholar 

  5. Maayan, C., Kaplan, E., Shachar, S., Peleg, O. & Godfrey, S. Incidence of familial dysautonomia in Israel 1977–1981. Clin. Genet. 32, 106–108 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Blumenfeld, A. et al. Exclusion of familial dysautonomia from more than 60% of the genome. J. med. Genet. 30, 47–52 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tanzi, R.E. et al. Genetic linkage map of human chromosome 21. Genomics 3, 129–136 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. Kwiatkowski, D.J. et al. Construction of a GT polymorphism map of human 9q. Genomics 12, 229–240 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Genome Data Base (GDB) version 4.1, Welch WH Medical Library, Baltimore Maryland 21205.

  10. Gusella, J.F. Location cloning strategy for characterizing genetic defects in Huntington's disease and Alzheimer's disease. FASEB J. 3, 2036–2041 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Carroll, S.L. et al. Dorsal root ganglion neurons expressing trk are selectively sensitive to NGF deprivation in utero. Neuron 9, 779–788 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Verge, V.M.K. et al. Colocalization of NGF binding sites, trk mRNA, and low-affinity NGF receptor mRNA in primary sensory neurons: responses to injury and infusion of NGF. J. Neurosci. 12, 4011–4022 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chao, M.S. Neurotrophin receptors: a window into neuronal differentiation. Neuron 9, 583–593 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Breakefield, X.O. et al. Structural gene for β-nerve growth factor not defective in familial dysautonomia. Proc. natn. Acad. Sci. U.S.A. 81, 4213–4216 (1984).

    Article  CAS  Google Scholar 

  15. Breakefield, X.O. et al. DNA polymorphisms for the nerve growth factor receptor gene exclude its role in familial dysautonomia. Molec. Biol. Med. 3, 483–494 (1986).

    CAS  PubMed  Google Scholar 

  16. Miozzo, M. et al. Human trk proto-oncogene maps to chromosome 1q32–q34. Oncogene 5, 1411–1414 (1990).

    CAS  PubMed  Google Scholar 

  17. Maisonpierre, P.C. et al. Human and rat brain derived neurotrophic factor and neurotrophin-3: gene structures, distributions, and chromosomal localizations. Genomics 10, 558–568 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Berkemeier, L.R., Ozcelik, T., Francke, U. & Rosenthal, A. Human chromosome 19 contains the neurotrophin-5 gene locus and three related genes that may encode novel acidic neurotrophins. Somat. Cell molec. Genet. 18, 233–245 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Kramer, P.L. et al. Dystonia gene in Ashkenazi Jewish population is located on chromosome 9q32–34. Ann. Neurol. 27, 114–120 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Ozelius, L.J. et al. Strong allelic association between the torsion dystonia gene (DYT1) and loci on chromosome 9q34 in Ashkenazi Jews. Am. J. hum. Genet. 50, 619–628 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Walsh, P.S., Metzger, D.A. & Higuchi, R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10, 506–513 (1991).

    CAS  PubMed  Google Scholar 

  22. Ozelius, L.J. et al. A genetic linkage map of human chromosome 9q. Genomics 14, 715–720 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. NIH/CEPH collaborative mapping group. A comprehensive genetic linkage map of the human genome. Science 258, 67–86 (1992).

  24. Williamson, R. et al. Report of the committee and catalogues of cloned and mapped genes, markers formatted for PCR and DNA polymorphisms. Cytogenet. Cell Genet. 58, 1190–1833 (1991).

    Article  Google Scholar 

  25. Wilkie, P.J., Krizman, D.B. & Weber, J.L. Linkage map of human chromosome 9 microsatellite polymorphisms. Genomics 12, 607–609 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Furlong, R.A. et al. Adinucleotide repeat polymorphism at the D9S109 locus. Nucl. Acids Res. 20, 925 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lyall, J.E.W. et al. A dinucleotide repeat polymorphism at the D9S127 locus. Nucl. Acids Res. 20, 925 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ozelius, L. et al. Dinucleotide repeat polymorphism for the hexabrachion gene (HXB) on chromosome 9q32–34. Hum. molec. Genet. 1, 141 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Povey, S. et al. Report on the first international workshop on chromosome 9. Ann. hum. Genet. 56, 167–221 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Trofatter, J.A., Haines, J.L. & Conneally, P.M. LIPIN: An interactive data entry and management program for LIPED. Am. J. hum. Genet. 39, 147–148 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lathrop, G.M., Lalouel, J.M., Julier, C. & Ott, J. Strategies for multi-point linkage analysis in humans. Proc. natn. Acad. Sci. U.S.A. 81, 3443–3446 (1984).

    Article  CAS  Google Scholar 

  32. Lander, E.S. et al. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181 (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blumenfeld, A., Slaugenhaupt, S., Axelrod, F. et al. Localization of the gene for familial dysautonomia on chromosome 9 and definition of DNA markers for genetic diagnosis. Nat Genet 4, 160–164 (1993). https://doi.org/10.1038/ng0693-160

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0693-160

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing