Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutations in the integrin α7 gene cause congenital myopathy

Abstract

The basal lamina of muscle fibers plays a crucial role in the development and function of skeletal muscle. An important laminin receptor in muscle is integrin α7β1D. Integrin β1 is expressed throughout the body, while integrin α7 is more muscle-specific1–5. To address the role of integrin α7 in human muscle disease, we determined α7 protein expression in muscle biopsies from 117 patients with unclassified congenital myopathy and congenital muscular dystrophy by immunocytochemistry. We found three unrelated patients with integrin α7 deficiency and normal laminin α2 chain expression. To determine if any of these three patients had mutations of the integrin α7 gene, ITGA7, we cloned and sequenced the full-length human ITGA7 cDNA, and screened the patients for mutations. One patient had splice mutations on both alleles; one causing a 21 -bp insertion in the conserved cysteine-rich region, and the other causing a 98-bp deletion. A second patient was a compound heterozygote for the same 98-bp deletion, and had a 1-bp frame-shift deletion on the other allele. A third showed marked deficiency of ITGA7 mRNA. Clinically, these patients showed congenital myopathy with delayed motor milestones. Our results demonstrate that mutations in ITGA7 are involved in a form of congenital myopathy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. von der Mark, H. et al. Skeletal myoblasts utilize a novel β1-series integrin and not α6β1 for binding to the E8 and T8 fragments of laminin. J. Biol. Chem. 266, 23593–23601 (1991).

    CAS  PubMed  Google Scholar 

  2. Song, W.K., Wang, W., Foster, R.F., Bielser, D.A. & Kaufman, S.J. H36-α7 is a novel integrin alpha chain that is developmentally regulated during skeletal myogenesis. J. Cell Biol. 117, 643–657 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Collo, G., Starr, L. & Quaranta, V.A. . A new isoform of the laminin receptor integrin α7β1 is developmentally regulated in skeletal muscle. J. Biol. Chem. 268, 19019–19024 (1993).

    CAS  PubMed  Google Scholar 

  4. Song, W.K., Wang, W., Sato, H., Bielser, D.A. & Kaufman, S.J. Expression of α7 integrin cytoplasmic domains during skeletal muscle development: Alternate forms, conformational change, and homologies with serine/threonine kinases and tyrosine phosphatases. J. Cell Sci. 106, 1139–1152 (1993).

    CAS  PubMed  Google Scholar 

  5. Ziober, B.L. et al. Alternative extracellular and cytoplasmic domains of the integrin alpha 7 subunit are differentially expressed during development. J. Biol. Chem. 268, 26773–26783 (1993).

    CAS  PubMed  Google Scholar 

  6. Hodges, B.L. et al. Altered expression of the alpha7beta1 integrin in human and murine muscular dystrophies. J. Cell Sci. 110, 2873–2881 (1997).

    CAS  PubMed  Google Scholar 

  7. Vachon, P. et al. Integrins (α7β1) in muscle function and survival. Disrupted expression in merosin-deficient congenital muscular dystrophy. J. Clin. Invest. 100, 1870–1881 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, W., Wu, W., Desai, T., Ward, D.C. & Kaufman, S.J. Localization of the alpha 7 integrin gene (ITGA7) on human chromosome 12q13: clustering of integrin and Hox genes implies parallel evolution of these gene families. Genomics 26, 568–570 (1995).

    CAS  PubMed  Google Scholar 

  9. Veiling, T. et al. Distinct alpha 7A beta 1 and alpha 7B beta 1 integrin expression patterns during mouse development: alpha 7A is restricted to skeletal muscle but alpha 7B is expressed in striated muscle, vasculature, and nervous system. Dev. Dyn. 207, 355–371 (1996).

    Article  Google Scholar 

  10. Kil, S. & Bronner-Fraser, M. Expression of the avian alpha 7-integrin in developing nervous system and myotome. Int. J. Dev. Neurosci. 14, 181–190 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Fardeau, M. & Tomé, F.M.S. Congenital myopathies. in Myology. (eds Engel, A.G. & Franzini-Armstrong, C.) 1487–1532 (McGraw-Hill, Inc., New York, 1994).

  12. Dubowitz, V. Congenital muscular dystrophy, in Color Atlas of Muscle Disorders in Childhood, (ed. Dubowitz, V.) 52–65 (Year Book Medical Pub., Chicago, USA, 1989).

  13. Banker, B.Q. The congenital muscular dystrophies. in Myology (eds Engel, A.G. & Franzini-Armstrong, C.) 1275–1289 (McGraw-Hill, Inc., New York, USA, 1994).

  14. Mayer, U. et al. Absence of integrin alpha 7 causes a novel form of muscular dystrophy. Nature Genet. 17, 318–323 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Tomé, F.M.S. et al. Congenital muscular dystrophy with merosin deficiency. C. R. Acad. Sci. 317, 351–357 (1994).

    Google Scholar 

  16. Philpot, J., Sewry, C., Pennock, J. & Dubowitz, V. Clinical phenotype in congenital muscular dystrophy: correlation with expression of merosin in skeletal muscle. Neuromusc. Disord. 5, 301–305 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Helbling-Leclerc, A. et al. Mutations in the laminin α2-chain gene (LAMA2) cause merosin-deficient congenital muscular dystrophy. Nature Genet. 11, 216–218 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Guichehey, P. et al. Genetics of laminin alpha 2 chain (or merosin) deficient congenital muscular dystrophy: from identification of mutations to prenatal diagnosis. Neuromusc. Disord. 7, 180–186 (1997).

    Article  Google Scholar 

  19. Kivirikko, S. et al. A homozygous nonsense mutation in the alpha 3 chain gene of laminin 5 (LAMA3) in lethal (Herlitz) junctional epidermolysis bullosa. Hum. Mol. Genet. 4, 959–962 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Vidal, F. et al. Cloning of the laminin alpha 3 chain gene (LAMA3) and identification of a homozygous deletion in a patient with Herlitz junctional epidermolysis bullosa. Genomics 30, 273–280 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Pulkkinen, L. et al. Homozygous alpha6 integrin mutation in junctional epidermolysis bullosa with congenital duodenal atresia. Hum. Mol. Genet. 6, 669–674 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Ruzzi, L. et al. A homozygous mutation in the integrin alpha6 gene in junctional epidermolysis bullosa with pyloric atresia. J. Clin. Invest. 99, 2826–2831 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Georges-Labouesse, E. et al. Absence of integrin alpha 6 leads to epidermolysis bullosa and neonatal death in mice. Nature Genet. 13, 370–373 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Martin, P.T., Kaufman, S.J., Kramer, R.H. & Sanes, J.R. Synaptic integrins in developing, adult, and mutant muscle: selective association of α1, α7A, and α7B integrins with the neuromuscular junction. Dev. Biol. 174, 125–139 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Hayashi, Y.K. et al. Abnormal localization of laminin subunits in muscular dystrophies. J. Neurol. Sci. 119, 53–64 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Arahata, K. et al. Dystrophin diagnosis: comparison of dystrophin abnormalities by immunof luorescence and immunoblot analyses. Proc. Natl. Acad. Sci. USA 86, 7154–7158 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arahata, K. et al. Preservation of the C-terminus of dystrophin molecule in the skeletal muscle from Becker muscular dystrophy. J. Neurol. Sci. 101, 148–156 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Mizuo, Y., Yoshida, M., Nonaka, I. & Ozawa, E. Expression of utrophm (dystrophin-related protein) and dystrophin-associated glycoproteins in muscles from patients with Duchenne muscular dystrophy. Muscle Nerve 17, 206–216 (1994).

    Article  Google Scholar 

  29. Yoshida, M., Mizuno, Y., & Ozawa, E. A dystrophin-associated glycoprotein, A3a (one of 43DAG doublets), is retained in Duchenne muscular dystrophy muscle. J. Biochem. 114, 634–639 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Nagano, A. et al. Emerin deficiency at the nuclear membrane in patients with Emery-Dreifuss muscular dystrophy. Nature Genet. 12, 254–259 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiichi Arahata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi, Y., Chou, FL., Engvall, E. et al. Mutations in the integrin α7 gene cause congenital myopathy. Nat Genet 19, 94–97 (1998). https://doi.org/10.1038/ng0598-94

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0598-94

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing