Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle

Abstract

The muscle myosins are hexomeric proteins consisting of two heavy chains and two pairs of light chains, the latter called essential (ELC) and regulatory (RLC). The light chains stabilize the long alpha helical neck of the myosin head. Their function in striated muscle, however, is only partially understood. We report here the identification of distinct missense mutations in a skeletal/ventricular ELC and RLC, each of which are associated with a rare variant of cardiac hypertrophy as well as abnormal skeletal muscle.We show that myosin containing the mutant ELC has abnormal function, map the mutant residues on the three–dimensional structure of myosin and suggest that the mutations disrupt the stretch activation response of the cardiac papillary muscles.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Huxley, A.R. Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 7, 255–318 (1957).

    Article  CAS  PubMed  Google Scholar 

  2. Huxley, H.E. The mechanism of muscular contraction. Science 164, 1356–1366 (1969).

    Article  CAS  PubMed  Google Scholar 

  3. Rayment, I. et al. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261, 50–58 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Xie, X. et al. Structure of the regulatory domain of scallop myosin at 2.8 Å resolution. Nature 368, 306–312 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Houdusse, A. & Cohen, C. Structure of the regulatory domain of scallop myosin at 2 resolution:implications for regulation. Structure 4, 21–32 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Fisher, A.J. et al. Structural studies of myosin: nucleotide complexes: a revised model for the molecular basis of muscle contraction. Biophys. J. 68, 19s–28s (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Irving, M. et al. Tilting of the light-chain region of myosin during step length changes and active force generation in skeletal muscle. Nature 375, 748–751 (1995).

    Article  Google Scholar 

  8. Whittaker, M. et al. Å 35-A movement of smooth muscle myosin on ADP release. Nature 378, 748–751 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Eden, D. & Highsmith, S. Myosin cross-bridge elasticity. Biophys. J. 68, 372s–373s (1994).

    Google Scholar 

  10. Morano, I. & Ruegg, J.C. Calcium sensitivity of myofilaments in cardiac muscle- effect of myosin phosphorylation. Basic Res. Cardiol. 81, 17s–23s

  11. Persechini, A., Stull, J.T. & Cooke, R. The effect of myosin phosphorylation on the contractile properties of skinned rabbit skeletal muscle fibers. J. Biol. Chem. 260, 7951–7954 (1985).

    CAS  PubMed  Google Scholar 

  12. Sweeney, H.L. & Stull, J.T. Phosphorylation of myosin in permeabilized mammalian cardiac and skeletal muscle cells. Am. J. Physiol. 250, C657–C660 (1986).

    Article  CAS  PubMed  Google Scholar 

  13. Payment, I., Holden, H.M., Sellers, J., Fananapazir, L. & Epstein, N.D Structural interpretation of the mutations in the β-cardiac myosin that have been implicated in familial hypertrophic cardiomyopathy. Proc. Natl. Acad. Sci.USA 92, 3864–3868

  14. Maron, B.J. & Epstein, S.E. Hypertrophic cardiomyopathy: a discussion of nomenclature. Am J. Cardiol. 43, 1242–1244 (1979).

    Article  CAS  PubMed  Google Scholar 

  15. Thierfelder, F. et al. α-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell 77, 701–712 (1994).

    Article  PubMed  Google Scholar 

  16. Bonne, G. et al. Cardiac myosin binding protein-C gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy. Nature Genet. 11, 438–440 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Watkins, H. et al. Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nature Genet. 11, 434–437 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Cuda, G., Fananapazir, L., Zhu, W.-Z., Sellers, J. & Epstein, N.D. Skeletal muscle expression and abnormal function of β-myosin in hypertrophic cardiomyopathy. J. Clin. Invest. 91, 2861–2865 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Perryman, M.B. et al. Expression of a missense mutation in the mRNA for b-myosin heavy chain in myocardial tissue in hypertrophic cardiomyopathy. J. Clin. Invest. 90, 271–277 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pavlakis, S.G., Rowland, L.R., DeVivo, D.C., Bonilla, E. & DiMauro, S. in Advances in Contemporary Neurology (ed. Plum, F.) 95–133 (FA. Davis, Philadelphia, 1988).

    Google Scholar 

  21. Steiger, G.J. Stretch activation and myogenic oscillation of isolated contractile structures of heart muscle. Pflugers Arch. 330, 347–361 (1971).

    Article  CAS  PubMed  Google Scholar 

  22. Tohtong, R., Yamashita, H., Graham, M., Haeberle, J., Simcox, A. & Maughan, D. Impairment of muscle function caused by mutations of phosphorylation sites in myosin regulatory light chain. Nature 374, 650–653 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Fodor, W.L. Human ventricular/slow twitch myosin alkalai light chain gene characterization, sequence, and chromosomal location. J. Biol. Chem. 264, 2143–2149 (1989).

    CAS  PubMed  Google Scholar 

  24. Macera, M.J., Szabo, R., Wadgaonkar, R., Siddiqui, M.A.G. & Verma, R.S. Localization of the gene coding for ventricular myosin regulatory light chain (MYL2) to human chromosome 12q23-q24. Genomics 13, 829–831 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Epstein, N.D., Cohn, G.M., Cyran, F. & Fananapazir, L. Differences in clinical expression of hypertrophic cardiomyopathy associated with two distinct mutations in the β-myosin heavy chain gene: a Leu908Val and an Arg403Gln mutation. Circulation 86, 345–352 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Fananapazir, L. & Epstein, N.D. Genotype-phenotype correlations in hypertrophic cardiomyopathy. Circulation 89, 22–32 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Romeo, G. & McKusick, V.A. Phenotypic diversity, allelic series and modifier genes. Nature Genet. 7, 451–453 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Umemoto, S. & Sellers, J.R. Characterization of in vitro motility assays using smooth muscle and cytoplasmic myosins. J. Biol. Chem. 265, 14864–14869 (1990).

    CAS  PubMed  Google Scholar 

  29. Spudich, J.A. How molecular motors work. Nature 372, 515–518 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Lankford, E.B., Epstein, N.D., Hananapazir, L. & Sweeney, H.L. Abnormal contractile properties of muscle fibers expressing β-myosin chain mutations in patients with hypertrophic cardiomyopathy. J. Clin. Invest. 95, 1409–1414 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fananapazir, L., Dalakas, M.C., Cohn, G. & Epstein, N.D. Missense mutations in the β-myosin heavy chain cause central core disease in hypertrophic cardiomyopathy. Proc. Natl. Acad. Sci. USA 90, 3993–3997 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. VanBuren, P., Waller, G.S., Harris, D.E., Trybus, K.M., Warshaw, D.M. & Lowey, S. The essential light chain is required for full force production by skeletal muscle myosin. Proc. Natl. Acad. Sci. USA 91, 12403–12407 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huxley, A.F. & Simmons, R.M. Proposed mechanism of force generation in striated muscle. Nature 233, 533–538 (1972).

    Article  Google Scholar 

  34. Milligan, R.A., Whittaker, M. & Safer, D. Molecular structure of F-actin and location of surface binding sites. Nature 348, 217–221 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Trayer, I.P., Trayer, H.R. & Levine, B.A. Evidence that the N-terminal region of the A-1 light chain of myosin interacts directly with the C-terminal region of actin. Eur. J. Biochem. 164, 259–266 (1987).

    Article  CAS  PubMed  Google Scholar 

  36. Eisenberg, E. & Greene, L.E. The relation of muscle biochemistry to muscle physiology. Annu. Rev. Physiol. 42, 293–309 (1980).

    Article  CAS  PubMed  Google Scholar 

  37. Hill, T.L., Transduction in Biology (Academic Press, N. Y., (1977).

    Google Scholar 

  38. Steiger, G.J. in Insect Flight Muscle (ed. Tregear, R.T.). 221–268 (North-Holland, Amsterdam, 1977).

    Google Scholar 

  39. Pringle, J.W.S. Stretch activation of muscle: function and mechanism. Proc. R. Soc. Lond. B. 201, 107–130 (1978).

    Article  CAS  PubMed  Google Scholar 

  40. Maron, B.J., Gottdiener, J.S. & Epstein, S.E. Patterns and significance of distribution of left ventricular hypertrophy in hypertrophic cardiomyopathy. Am. J. Cardiol. 48, 418–428 (1981).

    Article  CAS  PubMed  Google Scholar 

  41. Du, Y. & Sarkar, S., Genbank Accession♯ L01652 (1993).

  42. Lathrop, G.M. & Lalouel, J.M. Easy calculations of lod scores andgenetic risks on small computers. Am. J. Hum. Gen. 36, 460–465 (1984).

    CAS  Google Scholar 

  43. Eisenberg, E. & Keilley, W.W. Troponin-tropomyosin complex. J. Biol. Chem. 249, 4742–4744 (1974).

    CAS  PubMed  Google Scholar 

  44. Devereux, J., Haeberli, P. & Smithies, O. A comprehensive set of sequence analysis programs for the VAX. Nucl. Acids Res. 12, 387–395 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kraulis, R.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structure. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal D. Epstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poetter, K., Jiang, H., Hassanzadeh, S. et al. Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nat Genet 13, 63–69 (1996). https://doi.org/10.1038/ng0596-63

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0596-63

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing