Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Striking sequence similarity over almost 100 kilobases of human and mouse T–cell receptor DNA

Abstract

We report here the comparative DNA sequence analysis of nearly 100 kilobases of contiguous DNA in the Cδ to Cα region of the α/δ T cell receptor loci (TCRAC/TCRDC) of mouse and man. This analysis — the largest genomic sequence comparison so far — provides new insights into the functions of the T cell receptor genes as well as the surrounding chromosome structure through the identification of actively conserved DNA sequences. In this comparison we have identified a very high level of organizational and noncoding sequence similarity (71%) in contrast to previous findings in the β–globin gene cluster. This observation begins to question the notion that much of the chromosomal non–coding sequence is junk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nadeau, J.H. et al. Comparative map for mice and humans. Mamm. Genome 3, 480–536 (1992).

    Article  CAS  Google Scholar 

  2. O'Brien, S.J. et al. Anchored reference loci for comparative genome mapping in mammals. Nature Genet. 3, 103–112 (1993).

    Article  CAS  Google Scholar 

  3. Li, W.-H. & Graur, D. Fundamentals of Molecular Evolution. 70, 71 (Sinauer Associates, Sunderiand, Massachussetts, 1991).

  4. denDennen, J.T., van Neck, J.W., Cremers, R.P.M., Lubsen, N.H. & Schoenmakers, J.G.G. Nucleotide sequence of the rat g crystallin gene region and comparison with an orthologous human region. Gene 78, 201–213 (1989).

    Article  Google Scholar 

  5. Collins, F. & Weissman, S.M. The molecular genetics of human hemoglobin. Prog. Nucleic Add Res. molec. Biol. 31, 315–462 (1984).

    Article  CAS  Google Scholar 

  6. Shehee, W.R. et al. Nucleotide sequence of the BALB/C mouse β-globin complex. J. molec. Biol. 205, 41–62 (1989).

    Article  CAS  Google Scholar 

  7. Koop, B.F. et al. The human T-cell receptor TCRAC/TCRDC (Cα/Cδ) region: Organization, sequence and evolution of 97.6 kb of DNA. Genomics 19, 478–493 (1994).

    Article  CAS  Google Scholar 

  8. Koop, B.F. et al. Organization, structure and function of 95 kb spanning the murine T-cell receptor Cα to Cδ region. Genomics 13, 1209–1230 (1992).

    Article  CAS  Google Scholar 

  9. Wilson, R.K. et al. Nucleotide sequence analysis of the 95 kb 3′ terminal region of the murine T-cell receptor α/δ chain locus: strategy and methodology. Genomics 13, 1198–1208 (1992).

    Article  CAS  Google Scholar 

  10. Davis, M.M. T cell receptor gene diversity and selection. A. Rev. Biochem. 59, 475–496 (1990).

    Article  CAS  Google Scholar 

  11. Clark, S.P., Arden, B. & Mak, T.W. Human T-cell receptor variable gene segment families. Immunogenetlcs (In the press).

  12. Hunkapiller, T., Goverman, J., Koop, B.F. & Hood, L. Implications of the diversity of the immunoglobulin gene superfamily. Cold Spring Harbor Symp. Quant. Biol. 55, 15–29 (1989).

    Article  Google Scholar 

  13. Hunkapiller, T. & Hood, L. Molecular Evolution and the Immunoglobulin Gene Superfamily. In Evolution of Life: Fossils, Molecules and Culture (eds Osawa, S. & Honjo, T.) 123–143 (Springer-Verlag, New York, 1991).

    Google Scholar 

  14. Cheng, S.H. et al. Biology of murine gamma/delta T cells. Crit. Rev.lmmunol. 11, 145–166 (1991).

    CAS  Google Scholar 

  15. Lafaille, J.J., DeCloux, A., Bonneville, M., Takagaki, Y. & Tonegawa, S. Junctional sequences of T cell receptor γδ genes: implications for γδ T cell lineages and for a novel intermediate of V-(D)-J joining. Cell 59, 859–870 (1989).

    Article  CAS  Google Scholar 

  16. Meier, J.T. & Lewis, S.M. P nucleotides and V(D)J recombination: a fine-structure analysis. Molec. cell Biol. (in the press).

  17. Alt, F.W. et al. V(D)J recombination. Immunol. Today 13, 306–314 (1992).

    Article  CAS  Google Scholar 

  18. Lewis, S. & Gellert, M. The mechanism of antigen receptor gene assembly. Cell 59, 585–588 (1989).

    Article  CAS  Google Scholar 

  19. Reis, M.D., Griesser, H. & Mak, T.M. Antigen receptor genes in hemopoietic malignancies. Biochim. Biophys. Acta. 1072, 177–192 (1991).

    CAS  PubMed  Google Scholar 

  20. Davis, M.M. & Bjorkman, P.J. T-cell antigen receptor genes and T-cell recognition. Nature 334, 395–401 (1988).

    Article  CAS  Google Scholar 

  21. Thompson, S.D., Larche, M., Manzo, A.R. & Hurwitz, J.L. Diversity of T-cell receptor alpha gene transcripts in the newborn and adult periphery. Immunogenetics 36, 95–103 (1992).

    Article  CAS  Google Scholar 

  22. Hood, L., Koop, B.F., Goverman, J. & Hunkapiller, T. Model genomes: the benefits of analysing homologous human and mouse sequences. Trends Biotech. 10, 19–22 (1992).

    Article  CAS  Google Scholar 

  23. Siu, G., Strauss, E.C., Lai, E. & Hood, L. Analysis of a human Vβ gene subfamily. J. exp. Med. 164, 1600–1614 (1986).

    Article  CAS  Google Scholar 

  24. Hardison, R. & Miller, W. Use of long sequence alignments to study the evolution and regulation of mammalian globin gene clusters. Molec. Biol. Evol. 10, 73–102 (1993).

    CAS  PubMed  Google Scholar 

  25. Margot, J.B., Demers, G.W. & Hardison, R.C. Complete nucleotide sequence of the rabbit β-like globin gene cluster. J. molec. Biol. 205, 15–40 (1989).

    Article  CAS  Google Scholar 

  26. Fickett, J.W. Recognition of protein-coding regions in DNA sequences. Nucl. Acids Res. 10, 5303–5318 (1982).

    Article  CAS  Google Scholar 

  27. Uberbacker, E.C. & Mural, R.J. Locating protein coding region in human DNA sequences using a neural network—multiple senson approach. Proc. natn. Acad. Sci U.S.A 88, 11262–11264 (1991).

    Google Scholar 

  28. Lai, E., Concannon, P. & Hood, L. Orgnaization and evolution of the human T-cell receptor β gene family. Proc. natn. Acad. Sci. U.S.A. 84, 3846–3849 (1986).

    Article  Google Scholar 

  29. Hara, J. et al. Differential usage of d recombining element and Vδ genes during T-cell ontogeny. Blood 78, 2075–2081 (1991).

    CAS  PubMed  Google Scholar 

  30. deVillartay, J.-P., Mossalayi, D., de Chasseval, R., Dalloul, A. & Debre, P. The differentiation of human pro-thymocytes along the TCR-α/δ pathway in vitro is accompanied by the site-specific deletion of the TCR-δ locus. Int. Immunol. 3, 1301–1305 (1991).

    Article  CAS  Google Scholar 

  31. Hesse, J.E., Lieber, M.R., Mizuuchi, K. & Gellert, M. V(D)J recombination- a functional definition of the joining signals. Genes. Devel. 3, 1953–1961 (1989).

    Article  Google Scholar 

  32. Oltz, E.M. et al. A V(D)J recombinase-inducible B-cell line: Role of transcriptional enhancer elements in directing V(D)J recombination. Molec. Cell Biol. 13, 6223–6230 (1993).

    Article  CAS  Google Scholar 

  33. lida, Y. Quantification analysis of 5′-splice signal sequences in mRNA precursors. Mutations in 5′-splice signal sequence of human β-globin gene and β thalassemia. J. Theor. Biol. 145, 523–533 (1990).

    Article  Google Scholar 

  34. Kimura, N., Toyonaga, B., Yoshikai, Y., Du, R. & Mak, T. Sequences and repertoire of the human T-cell receptor a and β chain variable region genes in thymocytes. Eur. J. Immunol. 17, 375–383 (1987).

    Article  CAS  Google Scholar 

  35. Redondo, J.M., Hata, S., Brocklehurst, C. & Krangel, M.S. A T cell-specific transcriptional enhancer within the human T cell receptor δ locus. Nature 247, 1225–1229 (1990).

    CAS  Google Scholar 

  36. Luria, S., Gross, G., Horowitz, M. & Givol, D. Promoter and enhancer elements in the rearranged α chain gene of the human T cell receptor. EMBO J. 6, 3307–3312 (1987).

    Article  CAS  Google Scholar 

  37. Gill, L.L., Zaninetta, D. & Karjalainen, K. Transcriptional enhancer of the mouse T-cell receptor d gene locus. Eur. J. Immunol. 21, 807–810 (1991).

    Article  CAS  Google Scholar 

  38. Winoto, A. & Baltimore, D. α-β lineage specific expression of the α T cell receptor gene by nearby silencers. Cell 59, 649–655 (1989).

    Article  CAS  Google Scholar 

  39. Leiden, J.M. Transcriptional regulation during T-cell development: the alpha TCR gene as a molecular model. Immunol. Today 13, 22–30 (1991).

    Article  Google Scholar 

  40. Deininger, P.L., SINEs: Short, interspersed repeated DNA elements in higher eukaryotes. In Mobile DNA (eds Berg, D.E. & Howe, M.M.) (American Society for Microbiology, Washington, D.C. 1989).

    Google Scholar 

  41. Sinnett, D., Richer, C., Deragon, J.-M. & Labuda, D. Alu RNA transcripts in human embryonal carcinoma cells. Model of post-transcriptional selection of master sequences. J. molec. Biol. 226, 689–706 (1992).

    Article  CAS  Google Scholar 

  42. Loeb, D.D. et al. The sequence of a large L1md element reveals a tandemly repeated 5′ end and several features found in retrotransposons. Molec. cell. Biol. 6, 168–182 (1986).

    Article  CAS  Google Scholar 

  43. Legouis, R. et al. The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules. Cell 67, 423–435 (1991).

    Article  CAS  Google Scholar 

  44. Edwards, A. et al. Automated DNA sequencing of the human HPRT locus. Genomics 6, 593–608 (1990).

    Article  CAS  Google Scholar 

  45. Iris, R.J.M. et al. Dense Alu clustering and a potential new member of the NF kB family within a 90 kilobase HLA class III segment. Nature Genet. 3, 137–145 (1993).

    Article  CAS  Google Scholar 

  46. McCombie, W.R. et al. Expressed genes, Alu repeats and polymorphisms in cosmids sequenced from chromosome 4p16.3. Nature Genet. 1, 348–353 (1992).

    Article  CAS  Google Scholar 

  47. Koop, B.F. et al. Sequence length and error analysis of Sequenase and Taq (cycle) sequencing methods. BioTechniques 14, 442–447 (1993).

    CAS  Google Scholar 

  48. Seto, D., Koop, B.F., Seto, J. & Hood, L. An experimentally-derived data set constructed for testing large-scale sequence assembly algorithms. Genomics (in the press).

  49. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D. A basic local alignment search tool. J. molec. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  50. Smith, T.F. & Waterman, M.S. Identification of common molecular sequences. J. molec. Biol. 147, 195–197 (1981).

    Article  CAS  Google Scholar 

  51. Huang, X. & Miller, W. A time efficient, linear space local similarity algorithm. Adv. Appl. Math. 12, 337–357 (1991).

    Article  Google Scholar 

  52. Higgins, D.G. & Sharp, P.M. Fast and sensitive multiple sequence alignments on a microcomputer. Cabios 5, 151–153 (1989).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koop, B., Hood, L. Striking sequence similarity over almost 100 kilobases of human and mouse T–cell receptor DNA. Nat Genet 7, 48–53 (1994). https://doi.org/10.1038/ng0594-48

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0594-48

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing