Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of endocytosis by CUP-5, the Caenorhabditis elegans mucolipin-1 homolog

Abstract

Loss of the human mucolipin-1 gene underlies mucolipidosis type IV (MLIV), a lysosomal storage disease that results in severe developmental neuropathology1,2,3. Unlike other lysosomal storage diseases, MLIV is not associated with a lack of lysosomal hydrolases4; instead, MLIV cells display abnormal endocytosis of lipids and accumulate large vesicles, indicating that a defect in endocytosis may underlie the disease4,5,6. Here we report the identification of a loss-of-function mutation in the Caenorhabditis elegans mucolipin-1 homolog, cup-5, and show that this mutation results in an enhanced rate of uptake of fluid-phase markers, decreased degradation of endocytosed protein and accumulation of large vacuoles. Overexpression of cup-5(+) causes the opposite phenotype, indicating that cup-5 activity controls aspects of endocytosis. Studies in model organisms such as C. elegans have helped illuminate fundamental mechanisms involved in normal cellular function and human disease; thus the C. elegans cup-5 mutant may be a useful model for studying conserved aspects of mucolipin-1 structure and function and for assessing the effects of potential therapeutic compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nomarski and epifluorescence images of the arIs37[pmyo-3::ssGFP] (ac) and cup-5(ar465); arIs37[pmyo-3::ssGFP] (df) worms.
Figure 2: CUP-5 sequence and multiple sequence alignment.
Figure 3: CUP-5 overexpression.
Figure 4: CUP-5 localization in neurons.
Figure 5: BSA–Texas red injections into the pseudocoelom of arIs37[pmyo-3::ssGFP], cup-5(ar465); arIs37[pmyo-3::ssGFP], rme-8::GFP and cup-5(ar465); rme-8::GFP worms.
Figure 6: Heat-shock expression of secreted GFP.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Bargal, R. et al. Identification of the gene causing mucolipidosis type IV. Nature Genet. 26, 118–123 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Bassi, M.T. et al. Cloning of the gene encoding a novel integral membrane protein, mucolipidin-and identification of the two major founder mutations causing mucolipidosis type IV. Am. J. Hum. Genet. 67, 1110–1120 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sun, M. et al. Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum. Mol. Genet. 9, 2471–2478 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Merin, S., Livni, N., Berman, E.R. & Yatziv, S. Mucolipidosis IV: ocular, systemic, and ultrastructural findings. Invest. Ophthalmol. 14, 437–448 (1975).

    CAS  PubMed  Google Scholar 

  5. Bargal, R. & Bach, G. Mucolipidosis type IV: abnormal transport of lipids to lysosomes. J. Inherit. Metab. Dis. 20, 625–632 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Chen, C.S., Bach, G. & Pagano, R.E. Abnormal transport along the lysosomal pathway in mucolipidosis, type IV disease. Proc. Natl. Acad. Sci. USA 95, 6373–6378 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. & Prasher, D.C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Eeckman, F.H. & Durbin, R. ACeDB and macace. Methods Cell Biol. 48, 583–605 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Mu, F.T. et al. EEA1, an early endosome-associated protein. EEA1 is a conserved α-helical peripheral membrane protein flanked by cysteine “fingers” and contains a calmodulin-binding IQ motif. J. Biol. Chem. 270, 13503–13511 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, Y., Grant, B. & Hirsh, D. RME-8, a conserved J-domain protein, is required in endocytosis in C. elegans. Mol. Biol. Cell (in press).

  13. Peters, C. et al. Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature 409, 581–588 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Zeigler, M., Bargal, R., Suri, V., Meidan, B. & Bach, G. Mucolipidosis type IV: accumulation of phospholipids and gangliosides in cultured amniotic cells. A tool for prenatal diagnosis. Prenat. Diagn. 12, 1037–1042 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jakubowski, J. & Kornfeld, K. A local, high-density, single-nucleotide polymorphism map used to clone Caenorhabditis elegans cdf-1. Genetics 153, 743–752 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mello, C.C., Kramer, J.M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Han, M. & Sternberg, P.W. Analysis of dominant-negative mutations of the Caenorhabditis elegans let-60 ras gene. Genes Dev. 5, 2188–2198 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Mello, C. & Fire, A. DNA transformation. Methods Cell Biol. 48, 451–482 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Hosono, R., Hirahara, K., Kuno, S. & Kurihara, T. Mutants of Caenorhabditis elegans with dumpy and rounded head phenotype. J. Exp. Zool. 235, 409–421 (1982).

    Article  Google Scholar 

  21. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sonnhammer, E.L., von Heijne, G. & Krogh, A. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol. 6, 175–182 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Hirsh for inspiring our interest in coelomocytes; B. Grant and Y. Zhang for reagents and discussions; P. Loria and O. Hobert for the coelomocyte-specific promoter; A. Coulson and Y. Kohara for cosmid and cDNA clones; R. Ruiz and I. Temkin for technical assistance; B. Grant, S. Jarriault, D. Shaye and Y. Zhang for critical reading of the manuscript; and past and present members of the Greenwald, Hirsh and Hobert laboratories for discussions. I.G. is an Investigator of the Howard Hughes Medical Institute. H.F. was supported by an award from the Metropolitan Life Foundation to I.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Fares.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fares, H., Greenwald, I. Regulation of endocytosis by CUP-5, the Caenorhabditis elegans mucolipin-1 homolog. Nat Genet 28, 64–68 (2001). https://doi.org/10.1038/ng0501-64

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0501-64

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing