Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A novel endothelial-derived lipase that modulates HDL metabolism

Abstract

High-density lipoprotein (HDL) cholesterol levels are inversely associated with risk of atherosclerotic cardiovascular disease1. At least 50% of the variation in HDL cholesterol levels is genetically determined2,3, but the genes responsible for variation in HDL levels have not been fully elucidated. Lipoprotein lipase (LPL) and hepatic lipase (HL), two members of the triacylglyerol (TG) lipase family, both influence HDL metabolism2,4,5,6 and the HL (LIPC) locus has been associated with variation in HDL cholesterol levels in humans7,8. We describe here the cloning and in vivo functional analysis of a new member of the TG lipase family. In contrast to other family members, this new lipase is synthesized by endothelial cells in vitro and thus has been termed endothelial lipase (encoded by the LIPG gene). EL is expressed in vivo in organs including liver, lung, kidney and placenta, but not in skeletal muscle. In contrast to LPL and HL, EL has a lid of only 19 residues. EL has substantial phospholipase activity, but less triglyceride lipase activity. Overexpression of EL in mice reduced plasma concentrations of HDL cholesterol and its major protein apolipoprotein A-I. The endothelial expression, enzymatic profile and in vivo effects of EL suggest that it may have a role in lipoprotein metabolism and vascular biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human TG lipase family.
Figure 2: Expression of human EL.
Figure 3: Expression of EL in mice reduced HDL cholesterol and apoA-I levels.
Figure 4: Injection of AdhEL in LDL receptor-deficient mice reduced HDL cholesterol levels (a) to a greater extent than VLDL/LDL cholesterol levels ( b).

Similar content being viewed by others

References

  1. Gordon, D.J. & Rifkind, B.M. High-density lipoproteins—the clinical implications of recent studies. N. Engl. J. Med. 321, 1311–1316 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Breslow, J.L. Familial disorders of high density lipoprotein metabolism. in The Metabolic Basis of Inherited Disease (eds Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D.) 2031–2052 (McGraw-Hill, New York, 1995).

    Google Scholar 

  3. Heller, D.A., de Faire, U., Pedersen, N.L., Dahlen, G. & McClearn, G.E. Genetic and environmental influences on serum lipid levels in twins. N. Engl. J. Med. 328 , 1150–1156 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Murthy, V., Julien, P. & Gagne, C. Molecular pathobiology of the human lipoprotein lipase gene. Pharmacol. Ther. 70, 101– 135 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Goldberg, J.I. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J. Lipid Res. 37, 693 –707 (1996).

    CAS  PubMed  Google Scholar 

  6. Bensadoun, A. & Berryman, D.E. Genetics and molecular biology of hepatic lipase. Curr. Opin. Lipidol. 7, 77–81 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Cohen, J.C., Wang, Z., Grundy, S.M., Stoesz, M.R. & Guerra, R. Variation at the hepatic lipase and apolopoprotein AI/CII/AIV loci is a major cause of genetically determined variation in plasma HDL cholesterol levels. J. Clin. Invest. 94, 2377– 2384 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guerra, R., Wang, J., Grundy, M.S. & Cohen, C.J. A hepatic lipase (LIPC) allele associated with high plasma concentrations of high density lioporotein cholesterol. Proc. Natl Acad. Sci. USA 94, 4532–4537 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Winkler, F.K., D'Arcy, A. & Hunziker, W. Structure of human pancreatic lipase. Nature 343, 771–774 ( 1990).

    Article  CAS  PubMed  Google Scholar 

  10. van Tilbeurgh, H., Roussel, A., Lalouel, J.M. & Cambillau, C. Lipoprotein lipase. Molecular model based on the pancreatic lipase x-ray structure: consequences for heparin binding and catalysis. J. Biol. Chem. 269, 4626–4633 ( 1994).

    CAS  PubMed  Google Scholar 

  11. Dugi, K.A., Dichek, H.L. & Santamarina-Fojo, S. Human hepatic and lipoprotein lipase: the loop covering the catalytic site mediates lipase substrate specificity. J. Biol. Chem. 270, 25396–25401 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  12. Shimada, M. et al. Overexpression of human lipoprotein lipase in transgenic mice: resistance to diet-induced hypertriglyceridemia and hypercholesterolemia. J. Biol. Chem. 268, 17924– 17929 (1993).

    CAS  PubMed  Google Scholar 

  13. Shimada, M. et al. Suppression of diet-induced atherosclerosis in low density lipoprotein receptor knockout mice overexpressing lipoprotein lipase. Proc. Natl Acad. Sci. USA 93, 7242– 7246 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Hokanson, J.E. Lipoprotein lipase gene variants and risk of coronary disease: a quantitative analysis of population-based studies. Int. J. Clin. Lab. Res. 27, 24–34 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Pimstone, N.S. et al. Mutations in the gene for lipoprotein lipase: a cause for low HDL cholesterol levels in individuals heterozygous for familial hyper-cholesterolemia. Arterioscler. Thromb. Vasc. Biol. 15, 1704 –1712 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Hegele, R. et al. Hepatic lipase deficiency: clinical, biochemical, and molecular genetic characteristics. Arterioscler. Thromb. 13, 720–728 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Homanics, G.E. et al. Mild dyslipidemia in mice following targeted inactivation of the hepatic lipase gene. J. Biol. Chem. 270, 2974–2980 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Mezdour, H., Jones, R., Dengremont, C., Castro, G. & Maeda, N. Hepatic lipase deficiency increases plasma cholesterol but reduces susceptibility to atherosclerosis in apoliprotein E-deficient mice. J. Biol. Chem. 272, 13570 –13575 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Busch, S.J. et al. Human hepatic triglyceride lipase expression reduces high density lipoprotein and aortic cholesterol in cholesterol-fed transgenic mice. J. Biol. Chem. 269, 16376– 16382 (1994).

    CAS  PubMed  Google Scholar 

  20. Fan, J. et al. Overexpression of hepatic lipase in transgenic rabbits leads to a marked reduction of plasma high density lipoproteins and intermediate density lipoproteins. Proc. Natl Acad. Sci. USA 91, 8724–8728 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Blades, B., Vega, G.L. & Grundy, S.M. Activities of lipoprotein lipase and hepatic triacylglyceride lipase in postheparin plasma of patients with low concentrations of HDL cholesterol. Arterioscler. Thromb. 13, 1227– 1235 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Mahaney, C.M. et al. A major locus influencing plasma high-density lipoprotein cholesterol levels in the San Antonio family heart study. Arterioscler. Thromb. Vasc. Biol. 15, 1730–1739 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Kozarsky, K.F. et al. Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels. Nature 387, 414–417 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Mahley, R.W. & Zhong-Sheng, J. Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J. Lipid Res. 40, 1– 16 (1999).

    CAS  Google Scholar 

  25. Farese, R.V. & Herz, J. Cholesterol metabolism and embryogenesis. Trends Genet. 14, 115– 120 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Tsukamoto, K., Smith, P., Glick, J.M. & Rader, D.J. Liver-directed gene transfer and prolonged expression of three major human apoE isoforms in apoE deficient mice. J. Clin. Invest. 100, 107–114 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tsukamoto, K. et al. Comparison of human apoA-I expression in mouse models of atherosclerosis after gene transfer using a second generation adenovirus. J. Lipid Res. 38, 1869–1876 ( 1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Tocque, A. Minnich and J. Glick for helpful discussions and S. French, J. Bruno, R. Howk, M. McCoy, P. Smith, A. Lillethun and R. Hughes for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Rader.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaye, M., Lynch, K., Krawiec, J. et al. A novel endothelial-derived lipase that modulates HDL metabolism. Nat Genet 21, 424–428 (1999). https://doi.org/10.1038/7766

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/7766

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing