Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis

Abstract

Nephropathic cystinosis, an autosomal recessive disorder resulting from defective lysosomal transport of cystine, is the most common inherited cause of renal Fanconi syndrome. The cystinosis gene has been mapped to chromosome 17p13. We found that the locus D17S829 was homozygously deleted in 23 out of 70 patients, and identified a novel gene, CTNS, which mapped to the deletion interval. CTNS encodes an integral membrane protein, cystinosin, with features of a lysosomal membrane protein. Eleven different mutations, all predicted to cause loss of function of the protein, were found to segregate with the disorder.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gahl, W.A., Schneider, J.A. & Aula, P.P. Lysosomal transport disorders: cystinosis and sialic acid storage disorders. In The Metabolic and Molecular Basis of Inherited Disease. (eds Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D.) 3763–3797 (McGraw-Hill, New York, 1995).

  2. Gahl, W.A., Bashan, N., Tietze, F., Bernardini, I. & Schulman, J.D. Cystine transport is defective in isolated leukocyte lysosomes from patients with cystinosis. Science 217, 1263–1265 (1982).

    Article  CAS  PubMed  Google Scholar 

  3. Gahl, W.A. et al. Characteristics of cystine counter-transport in normal and cystinotic lysosome-rich leukocyte granular fractions. Biochem. J. 216, 393–400 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. The Cystinosis Collaborative Research Group. Linkage of the gene for cystinosis to markers on the short arm of chromosome 17. Nature Genet. 10, 246–248 (1995).

  5. Jean, G. et al. High-resolution mapping of the gene for cystinosis, using combined biochemical and linkage analysis. Am. J. Hum. Genet. 58, 535–543 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. McDowell, G. et al. Fine mapping of the cystinosis gene using an integrated genetic and physical map of a region within human chromosome band 17p13. Biochem. Mol. Med. 58,135–141 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Peters, U. et al. Nephropathic cystinosis (CTNS-LSB): Construction of a YAC contig comprising the refined critical region on chromosome 17p13. Eur. J. Hum. Genet. 5, 9–14 (1997).

    CAS  PubMed  Google Scholar 

  8. Dib, C. et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380, 152–154 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Lehrach, H. et al. Hybridization fingerprinting in genome mapping and sequencing. In Genome Analysis, Volume 1: Genetic and Physical Mapping (eds Davies, K.E. & Tighman, S.M.) 39–81 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1990).

    Google Scholar 

  10. loannou, P.A . et al. A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nature Genet. 6, 84–89 (1994).

    Article  Google Scholar 

  11. Collo, G. et al. Cloning of P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels. J. Neurosci. 16, 2495–2507 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kozak, M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. Biol. Chem. 266, 19867–19870 (1991).

    CAS  PubMed  Google Scholar 

  13. Shapiro, M.B. & Senapathy, P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 15, 7155–7174 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hardwick, K.G. & Pelham, H.R.B. ERS1 a seven transmembrane domain protein from Saccharomyces cerevisiae. Nucleic Acids Res. 18, 2177 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Klein, P., Kanehisa, M. & DeLisi, C. The detection and classification of membrane-spanning proteins. Biochim. Biophys. Acta 815, 468–476 (1985).

    Article  CAS  PubMed  Google Scholar 

  16. Hofmann, K. & Stoffel, W. TMBase - A database of membrane spanning protein segments. Biol. Chem. Hoppe-Seyler 374, 166 (1993).

  17. Song, I. & Smith, W.L., Ser/Pro-Thr-Glu-Leu tetrapeptides of prostaglandin endoperoxide H synthases-1 and -2 target the enzymes to the endoplasmic reticulum. Arch. Biochem. Biophys. 334, 67–72 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Hunziker, W. & HJ.Intracellular trafficking of lysosomal membrane proteins. BioEssays 18, 379–389 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. von Heijne, G . & Gavel, Y . Topogenic signals in integral membrane proteins, Eur. J. Biochem. 174, 671–678 (1988).

    Article  CAS  PubMed  Google Scholar 

  20. Carstea, E.D. et al. Niemann-Pick C1 disease gene: Homology to mediators of cholesterol homeostasis. Science 277, 228–231 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Baxendale, S., Bates, G.P., MacDonald, M.E., Gusella, J.F. & Lehrach, H. The direct screening of cosmid libraries with YAC clones. Nucleic Acids Res. 19, 6651 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Riley, J. et al. A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. Nucleic Acids Res. 18, 2887–2890 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Church, D.M. et al. Isolation of genes from complex sources of mammalian genomic DNA using exon amplification. Nature Genet. 6, 98–105 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Burn, T.C., Connors, T.D., Klinger, K.W. & Landes, G.M. Increased exon-trapping efficiency through modifications to the pSPL3 splicing vector. Gene 161, 183–187 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Altschul, S.F., Gish, W., Milter, W., Myers, E.W. & DJ.Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Bairoch, A., Bucher, P. & Hofmann, K., Prosite database, its status in 1995. Nucleic Acids Res. 24, 189–196 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nakai, K. & Kanehisa, M. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14, 897–911 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Saunier, S. et al. A novel gene that encodes a protein with a putative src homology 3 domain is a candidate gene for familial juvenile nephronophthisis. Hum. Mol. Genet. 6, 2317–2323 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Town, M., Jean, G., Cherqui, S. et al. A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nat Genet 18, 319–324 (1998). https://doi.org/10.1038/ng0498-319

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0498-319

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing