Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Peg3/Pw1 is an imprinted gene involved in the TNF-NFκB signal transduction pathway

Abstract

Tumor necrosis factor (TNF) mediates a variety of biological activities including cell proliferation, differentiation and programmed cell death. The specific response to TNF depends upon cell type and reflects the presence of specific regulatory proteins that participate in the TNF response pathway. TNF signal transduction is mediated by TRAF2 which binds the TNF Receptor2 (TNFR2) and activates NFκB. We previously identified a gene Pw1, which encodes a large zinc-finger containing protein1. We have determined that Pw1 is identical to Peg3, a paternally expressed gene of unknown function2 (and will therefore be referred to as Peg3 throughout this text). We report here that Peg3 associates specifically with TRAF2 but not with other TRAF family members. Peg3 expression activates NFκB via IκB-NFκB dissociation and acts synergistically with TRAF2. Transfection of a truncated Peg3 containing the TRAF2 interaction site, abolishes NFκB activation by TRAF2 and/or TNF. We conclude that Peg3 is a regulator of the TNF response. These data reveal the involvement of an imprinted gene in this pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Relaix, F. et al. Pw1, a novel zinc-finger gene implicated in the myogenic and neuronal lineages. Dev. Biol. 177, 383–396 (1996).

    Article  CAS  Google Scholar 

  2. Kuroiwa, Y. et al. Peg3 imprinted gene on proximal chromosome 7 encodes for a zinc finger protein. Nature Genet. 12, 186–190 (1996).

    Article  CAS  Google Scholar 

  3. Rothe, M., Sarma, V., Dixit, V.M. & Goeddel, D.V. TRAF2-mediated activation of NF-kappa B by TNF receptor 2 and CD40. Science 269, 1424–1427 (1995).

    Article  CAS  Google Scholar 

  4. Hsu, H., Shu, H.B., Pan, M.G. & Goeddel, D.V. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84, 299–308 (1996).

    Article  CAS  Google Scholar 

  5. Stancovski, I. & Baltimore, D. NF-κB Activation: The IκB Kinase Revealed? Cell 91, 299–302 (1997).

    Article  CAS  Google Scholar 

  6. Brown, S.D., Chartier, F., Johnson, K. & Cavanna, J.S. Mapping the Hrc gene to proximal mouse chromosome 7: delineation of a conserved linkage group with human 19q. Genomics 18, 459–461 (1993).

    Article  CAS  Google Scholar 

  7. Jansen, G. et al. No imprinting involved in the expression of DM-kinase mRNAs in mouse and human tissues. Hum. Mol. Genet. 2, 1221–1227 (1993).

    Article  CAS  Google Scholar 

  8. Rubio, M.P. et al. The putative glioma tumor suppressor gene on chromosome 19q maps between APOC2 and HRC. Cancer Res. 54, 4760–4763 (1994).

    CAS  Google Scholar 

  9. Yong, W.H. et al. Chromosome 19q deletions in human gliomas overlap telomeric to D19S219 and may target a 425kb region centromeric to D19S112. J. Neuropathol. Exp. Neurol. 54, 622–666 (1995).

    Article  CAS  Google Scholar 

  10. Cao, Z., Xiong, J., Takeuchi, M., Kurama, T. & Goeddel, D.V. TRAF6 is a signal transducer for interleukin-1. Nature 383, 443–446 (1996).

    Article  CAS  Google Scholar 

  11. Cheng, G. et al. Involvement of CRAF1, a relative of TRAP, in CD40 signaling. Science 267, 1494–1498 (1995).

    Article  CAS  Google Scholar 

  12. Hu, H.M., O'Rourke, K., Boguski, M.S. & Dixit, V.M. A novel RING finger protein interacts with the cytoplasmic domain of CD40. J. Biol. Chem. 269, 30069–30072 (1994).

    CAS  Google Scholar 

  13. Nakano, H. et al. TRAF5, an activator of NF-kappaB and putative signal transducer for the lymphotoxin-beta receptor. J. Biol. Chem. 271, 14661–14664 (1996).

    Article  CAS  Google Scholar 

  14. Regnier, C.H. et al. Presence of a new conserved domain in CART1, a novel member of the tumor necrosis factor receptor-associated protein family, which is expressed in breast carcinoma. J. Biol. Chem. 270, 25715–25721 (1995).

    Article  CAS  Google Scholar 

  15. Rothe, M., Wong, S.C., Henzel, W.J. & Goeddel, D.V. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 78, 681–692 (1994).

    Article  CAS  Google Scholar 

  16. Song, H.Y. & Donner, D.B. Association of a RING finger protein with the cytoplasmic domain of the human type-2 tumour necrosis factor receptor. J. Biochem. 309, 825–829 (1995).

    Article  CAS  Google Scholar 

  17. Rothe, M. et al. I-TRAF is a novel TRAF-interacting protein that regulates TRAF-mediated signal transduction. Proc. Natl. Acad. Sci. USA. 93, 8241–8246 (1996).

    Article  CAS  Google Scholar 

  18. Takeuchi, M., Rothe, M. & Goeddel, D.V. Anatomy of TRAF2 : Distinct domains for Nuclear Factor-κB activation and association with tumor necrosis factor signaling proteins. J. Biol. Chem. 271, 19935–19942 (1996).

    Article  CAS  Google Scholar 

  19. Malinin, N.L., Boldin, M.P., Kovalenko, A.V. & Wallach, D. MAP3K-related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1. Nature 385, 540–544 (1997).

    Article  CAS  Google Scholar 

  20. Duyao, M., Buckler, A.J. & Sonenshein, G.E. Interaction of an NF-κB like factor with a site upstream of the c-myc promoter. Proc. Natl. Acad. Sci. USA 87, 4727–4731 (1990).

    Article  CAS  Google Scholar 

  21. Brown, K., Gerstberger, S., Carlson, L., Franzoso, G. & Siebenlist, U. Control of I kappa B-alpha proteolysis by site-specific, signal-induced phosphorylation. Science 267, 1485–1488 (1995).

    Article  CAS  Google Scholar 

  22. Hermeking, H. & Eick, D. Mediation of c-myc-induced apoptosis by p53. Science 165, 1091–1093 (1994).

    Google Scholar 

  23. Wang, C.Y., Mayo, M.W. & Baldwin, A.S.J. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science 274, 784–787 (1996).

    Article  CAS  Google Scholar 

  24. Van Antwerp, D.J., Martin, S.J., Kafri, T., Green, D.R. & Verma, I.M. Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science 27, 787–789 (1996).

    Article  Google Scholar 

  25. Beg, A.A. & Baltimore, D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 274, 782–784 (1996).

    Article  CAS  Google Scholar 

  26. Hsu, H., Huang, J., Shu, H.B., Baichwal, V. & Goeddel, D.V. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4, 387–396 (1996).

    Article  CAS  Google Scholar 

  27. Stanger, B.Z., Leder, P., Lee, T.H., Kim, E. & Seed, B. RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 81, 513–523 (1995).

    Article  CAS  Google Scholar 

  28. Ting, A.T., Pimentel-Muinos, F.X. & Seed, B. RIP mediates tumor necrosis factor receptor 1 activation of NF-kappaB but not Fas/APO-1-initiated apoptosis. EMBO J. 15, 6189–6196 (1996).

    Article  CAS  Google Scholar 

  29. Kitson, J. et al. A death-domain-containing receptor that mediates apoptosis. Nature 384, 372–375 (1996).

    Article  CAS  Google Scholar 

  30. Chinnaiyan, A. et al. Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science 274, 990–992 (1996).

    Article  CAS  Google Scholar 

  31. Beutler, B. et al. Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature 316, 552–554 (1985).

    Article  CAS  Google Scholar 

  32. Neumann, B., Kubicka, P. & Barlow, D.P. Characteristics of imprinted genes. Nature Genet. 9, 12–13 (1995).

    Article  CAS  Google Scholar 

  33. Hurst, L.D., McVean, G. & Moore, T. Imprinted genes have few and small introns Nature Genet. 12, 234–237 (1996).

  34. Chen, C. & Okayama, H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7, 2745–2752 (1987).

    Article  CAS  Google Scholar 

  35. Seed, B. & Sheen, J.Y. A simple phase-extraction assay for chloramphenicol acetyltransferase activy. Gene 67, 271–277 (1988).

    Article  CAS  Google Scholar 

  36. Lee, F.S., Hagler, J., Chen, Z.J. & Maniatis, T. Activation of the IkappaB alpha kinase complex by MEKK1, a kinase of the JNK pathway. Cell 88, 213–222 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Sassoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Relaix, F., Wei, XJ., Wu, X. et al. Peg3/Pw1 is an imprinted gene involved in the TNF-NFκB signal transduction pathway. Nat Genet 18, 287–291 (1998). https://doi.org/10.1038/ng0398-287

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0398-287

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing