Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Construction by gene targeting in human cells of a ‘conditional’ CDC2 mutant that rereplicates its DNA

Abstract

We describe a novel gene targeting strategy for the genetic analysis of essential genes in mammalian cells and its use to study the role of the cell cycle control gene CDC2 in human cells. A cell line (HT2-19) was generated in which endogenous CDC2 gene expression and cell viability depend on the presence of an inducer in the growth medium. In the absence of inducer, HT2-19 cells undergo extensive DNA rereplication and apoptosis. Rereplication is indicative of a role for human CDC2 in a control mechanism, previously undetected in mammalian cells, that prevents premature entry into S-phase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Capecchi, M.R. Altering the genome by homologous recombination. Science 244, 1288–1292 (1989).

    Article  CAS  Google Scholar 

  2. Porter, A.C.G. Designer genomes. Technique 1, 53–65 (1989).

    CAS  Google Scholar 

  3. Forsburg, S.L. & Nurse, P. Cell cycle regulation in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Annu. Rev. Cell Biol. 7, 227–256 (1991).

    Article  CAS  Google Scholar 

  4. Norbury, C. & Nurse, P. Animal cell cycles and their control. Annu. Rev. Biochem. 61, 441–470 (1992).

    Article  CAS  Google Scholar 

  5. Nigg, E.A. Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bioessays 17, 471–480 (1995).

    Article  CAS  Google Scholar 

  6. Morgan, D.O. Principles of CDK regulation Nature 374, 131–134 (1995).

    Article  CAS  Google Scholar 

  7. Nurse, P. Universal control mechanism regulating onset of M-phase. Nature 344, 503–508 (1990).

    Article  CAS  Google Scholar 

  8. Broek, D. Bartlett, R. Crawford, K. & Nurse, P. Involvement of p34cdc2 in establishing the dependency of S phase on mitosis. Nature 349, 388–393 (1991).

    Article  CAS  Google Scholar 

  9. Hayles, J. Fisher, D. Woollard, A. & Nurse, P. Temporal order of S phase and mitosis in fission yeast is determined by the state of the p34cdc2-mitotic B cyclin complex. Cell 78, 813–822 (1994).

    Article  CAS  Google Scholar 

  10. D'Urso, G. & Nurse, P. Checkpoints in the cell cycle of fission yeast. Curr. Opin. Genet. Dev. 5, 12–16 (1995).

    Article  CAS  Google Scholar 

  11. Correa Bordes, J. & Nurse, P. p25rum1 orders S phase and mitosis by acting as an inhibitor of the p34cdc2 mitotic kinase. Cell 83, 1001–1009 (1995).

    Article  CAS  Google Scholar 

  12. Dahmann, C. Diffley, J.F. & Nasmyth, K.A. S-phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of replication origins to a pre-replicative state. Curr. Biol. 5, 1257–1269 (1995).

    Article  CAS  Google Scholar 

  13. Girard, F. Strausfeld, U. Fernandez, A. & Lamb, N.J. Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell 67, 1169–1179 (1991).

    Article  CAS  Google Scholar 

  14. Pagano, M. et al. Regulation of the cell cycle by the cdk2 protein kinase in cultured human fibroblasts. J. Cell Biol. 121, 101–111 (1993).

    Article  CAS  Google Scholar 

  15. Tsai, L.H. Lees, E. Faha, B. Harlow, E. & Riabowol, K. The cdk2 kinase is required for the G1-to-S transition in mammalian cells. Oncogene 8, 1593–1602 (1993).

    CAS  Google Scholar 

  16. Hunter, T. & Pines, J. Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell 79, 573–582 (1994).

    Article  CAS  Google Scholar 

  17. Th'ng, J.P. et al. The FT210 cell line is a mouse G2 phase mutant with a temperature-sensitive CDC2 gene product. Cell 63, 313–324 (1990).

    Article  CAS  Google Scholar 

  18. Hamaguchi, J.R. et al. Requirement for p34cdc2 kinase is restricted to mitosis in the mammalian cdc2 mutant FT210. J. Cell Biol. 117, 1041–1053 (1992).

    Article  CAS  Google Scholar 

  19. Riabowol, K. Draetta, G. Brizuela, L. Vandre, D. & Beach, D. The cdc2 kinase is a nuclear protein that is essential for mitosis in mammalian cells. Cell 57, 393–401 (1989).

    Article  CAS  Google Scholar 

  20. Furukawa, Y. Piwnica Worms, H. Ernst, T.J. Kanakura, Y. & Griffin, J.D. cdc2 gene expression at the G1 to S transition in human T lymphocytes. Science 250, 805–808 (1990).

    Article  CAS  Google Scholar 

  21. Hu, M.C. & Davidson, N. The inducible lac operator-represser system is functional in mammalian cells. Cell 48, 555–566 (1987).

    Article  CAS  Google Scholar 

  22. Figge, J. Wright, C. Collins, C.J. Roberts, T.M. & Livingston, D.M. Stringent regulation of stably integrated chloramphenicol acetyl transferase genes by E. coli lac represser in monkey cells. Cell 52, 713–722 (1988).

    Article  CAS  Google Scholar 

  23. Brown, M. et al. lac repressor can regulate expression from a hybrid SV40 early promoter containing a lac operator in animal cells. Cell 49, 603–612 (1987).

    Article  CAS  Google Scholar 

  24. Itzhaki, J.E. & Porter, A.C. Targeted disruption of a human interferon-inducible gene detected by secretion of human growth hormone. Nucl. Acids Res. 19, 3835–3842 (1991).

    Article  CAS  Google Scholar 

  25. Itzhaki, J.E. et al. Targeted breakage of a human chromosome mediated by cloned human telomeric DNA. Nature Genet. 2, 283–287 (1992).

    Article  CAS  Google Scholar 

  26. Porter, A.C. & Itzhaki, J.E. Gene targeting in human somatic cells. Complete inactivation of an interferon-inducible gene. Eur. J. Biochem. 218, 273–281 (1993).

    Article  CAS  Google Scholar 

  27. Valancius, V. & Smithies, O. Testing an “in-out” targeting procedure for making subtle genomic modifications in mouse embryonic stem cells. Mol. Cell. Biol. 11, 1402–1408 (1991).

    Article  CAS  Google Scholar 

  28. Rasheed, S. Nelson Rees, W.A. Toth, E.M. Arnstein, P. & Gardner, M.B. Characterization of a newly derived human sarcoma cell line (HT-1080). Cancer 33, 1027–1033 (1974).

    Article  CAS  Google Scholar 

  29. Tang, F.J. Ts'o, P.O. & Lesko, S.A. Simultaneous in situ detection of beta-interferon mRNA and DNA in the same cell. J. Histochem. Cytochem. 37, 697–701 (1989).

    Article  CAS  Google Scholar 

  30. Darzynkiewicz, Z. et al. Features of apoptotic cells measured by flow cytometry. Cytometry 13, 795–808 (1992).

    Article  CAS  Google Scholar 

  31. Shi, L. et al. Premature p34cdc2 activation required for apoptosis. Science 263, 1143–1145 (1994).

    Article  CAS  Google Scholar 

  32. Ongkeko, W. Ferguson, D.J. Harris, A.L. & Norbury, C. Inactivation of Cdc2 increases the level of apoptosis induced by DNA damage. J. Cell Sci. 108, 2897–2904 (1995).

    CAS  PubMed  Google Scholar 

  33. Lazebnik, Y.A. Cole, S. Cooke, C.A. Nelson, W.G. & Earnshaw, W.C. Nuclear events of apoptosis in vitro in cell-free mitotic extracts: a model system for analysis of the active phase of apoptosis. J. Cell Biol. 123, 7–22 (1993).

    Article  CAS  Google Scholar 

  34. Norbury, C. MacFarlane, M. Fearnhead, H. & Cohen, G.M. Cdc2 activation is not required for thymocyte apoptosis. Biochem. Biophys. Res. Commun. 202, 1400–1406 (1994).

    Article  CAS  Google Scholar 

  35. Oberhammer, F.A. Hochegger, K. Froschl, G. Tiefenbacher, R. & Pavelka, M. Chromatin condensation during apoptosis is accompanied by degradation of lamin A+B, without enhanced activation of cdc2 kinase. J. Cell Biol. 126, 827–837 (1994).

    Article  CAS  Google Scholar 

  36. Wyborski, D.L. & Short, J.M. Analysis of inducers of the E. coli lac repressor system in mammalian cells and whole animals. Nucl. Acids Res. 19, 4647–4653 (1991).

    Article  CAS  Google Scholar 

  37. Gossen, M. et al. Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769 (1995).

    Article  CAS  Google Scholar 

  38. Welch, P.J. & Wang, J.Y. Coordinated synthesis and degradation of cdc2 in the mammalian cell cycle. Proc. Natl. Acad. Sci. USA 89, 3093–3097 (1992).

    Article  CAS  Google Scholar 

  39. Kuhn, R. Schwenk, F. Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science 269, 1427–1429 (1995).

    Article  CAS  Google Scholar 

  40. Hayashi, S. A Cdc2 dependent checkpoint maintains diploidy in Drosophila. Development 122, 1051–1058 (1996).

    CAS  PubMed  Google Scholar 

  41. Adachi, Y & Laemmli, U.K Study of the cell cycle-dependent assembly of the DNA pre-replication centres in Xenopus egg extracts. EMBO J. 13, 4153–4164 (1994).

    Article  CAS  Google Scholar 

  42. Rao, P.N. & Johnson, R.T. Mammalian cell fusion: studies on the regulation of DNA synthesis and mitosis. Nature 225, 159–164 (1970).

    Article  CAS  Google Scholar 

  43. King, R.W. Jackson, P.K. & Kirschner, M.W. Mitosis in transition. Cell 79, 563–571 (1994).

    Article  CAS  Google Scholar 

  44. Waldman, T. Lengauer, C. Kinzler, K.W. & Vogelstein, B. Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 381, 713–716 (1996).

    Article  CAS  Google Scholar 

  45. Herzinger, T. et al. Ultraviolet B irradiation-induced G2 cell cycle arrest in human keratinocytes by inhibitory phosphorylation of the cdc2 cell cycle kinase. Oncogene 11, 2151–2156 (1995).

    CAS  PubMed  Google Scholar 

  46. Lock, R.B. & Ross, W.E. Inhibition of p34cdc2 kinase activity by etoposide or irradiation as a mechanism of G2 arrest in Chinese hamster ovary cells. Cancer Res. 50, 3761–3766 (1990).

    CAS  Google Scholar 

  47. Lock, R.B. Inhibition of p34cdc2 kinase activation, p34cdc2 tyrosine dephosphorylation, and mitotic progression in Chinese hamster ovary cells exposed to etoposide. Cancer Res. 52, 1817–1822 (1992).

    CAS  PubMed  Google Scholar 

  48. Tsao, Y.P. D'Arpa, P. & Liu, L.F. The involvement of active DNA synthesis in camptothecin-induced G2 arrest: altered regulation of p34cdc2/cyclin B. Cancer Res. 52, 1823–1829 (1992).

    CAS  PubMed  Google Scholar 

  49. Cross, S.M. et al. A p53-dependent mouse spindle checkpoint. Science 267, 1353–1356 (1995).

    Article  CAS  Google Scholar 

  50. Bruno, S. Ardelt, B. Skierski, J.S. Traganos, F. & Darzynkiewicz, Z. Different effects of staurosporine, an inhibitor of protein kinases, on the cell cycle and chromatin structure of normal and leukemic lymphocytes. Cancer Res. 52, 470–473 (1992).

    CAS  PubMed  Google Scholar 

  51. Traganos, F. Gong, J. Ardelt, B. & Darzynkiewicz, Z. Effect of staurosporine on MOLT-4 cell progression through G2 and on cytokinesis. J. Cell Physiol 158, 535–544 (1994).

    Article  CAS  Google Scholar 

  52. Usui, T. et al. Uncoupled cell cycle without mitosis induced by a protein kinase inhibitor, K-252a. Cell Biol. 115, 1275–1282 (1991).

    Article  CAS  Google Scholar 

  53. Handeli, S. & Weintraub, H. The ts41 mutation in Chinese hamster cells leads to successive S phases in the absence of intervening G2, M, and G1. Cell 71, 599–611 (1992).

    Article  CAS  Google Scholar 

  54. Zhang, Y Wang, Z. & Ravid, K. The cell cycle in polyploid megakaryocytes is associated with reduced activity of cyclin B1-dependent cdc2 kinase. J. Biol. Chem. 271, 4266–4272 (1996).

    Article  CAS  Google Scholar 

  55. Yoshida, M. & Beppu, T. Reversible arrest of proliferation of rat 3Y1 fibroblasts in both the G1 and G2 phases by trichostatin A. Exp. Cell Res. 177, 122–131 (1988).

    Article  CAS  Google Scholar 

  56. Yoshida, M. et al. Effects of leptomycin B on the cell cycle of fibroblasts and fission yeast cells. Exp. Cell Res. 187, 150–156 (1990).

    Article  CAS  Google Scholar 

  57. Sleigh, M.J. A nonchromatographic assay for expression of the chloramphenicol acetyltransferase gene in eucaryotic cells. Anal. Biochem. 156, 251–256 (1986).

    Article  CAS  Google Scholar 

  58. Mulligan, R.C. & Berg, P. Selection for animal cells that express the Escherichia coli gene coding for xanthine-guanine phosphoribosyltransferase. Proc. Natl. Acad. Sci. USA 78, 2072–2076 (1981).

    Article  CAS  Google Scholar 

  59. Sadler, J.R. Sasmor, H. & Betz, J.L. A perfectly symmetric lac operator binds the lac repressor very tightly. Proc. Natl. Acad. Sci. USA 80, 6785–6789 (1983).

    Article  CAS  Google Scholar 

  60. Southern, P.J. & Berg, P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appl. Genet. 1, 327–341 (1982).

    CAS  Google Scholar 

  61. Fieck, A. Wyborski, D.L. & Short, J.M. Modifications of the E. coli Lac repressor for expression in eukaryotic cells: effects of nuclear signal sequences on protein activity and nuclear accumulation. Nucl. Acids Res. 20, 1785–1791 (1992).

    Article  CAS  Google Scholar 

  62. Dalton, S. Cell cycle regulation of the human cdc2 gene. EMBO J. 11, 1797–1804 (1992).

    Article  CAS  Google Scholar 

  63. Kelly, J.M. et al. Characterization of a human gene inducible by alpha- and beta-interferons and its expression in mouse cells. EMBO J. 5, 1601–1606 (1986).

    Article  CAS  Google Scholar 

  64. Harlow, E. & Lane, D. A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1988)

  65. Norbury, C. Blow, J. & Nurse, P. Regulatory phosphorylation of the p34cdc2 protein kmase in vertebrates. EMBO J. 10, 3321–3329 (1991).

    Article  CAS  Google Scholar 

  66. Nusse, M. Beisker, W. Hoffmann, C. & Tarnok, A. Flow cytometric analysis of G1-and G2/M-phase subpopulations in mammalian cell nuclei using side scatter and DNA content measurements. Cytometry 11, 813–821 (1990).

    Article  CAS  Google Scholar 

  67. Draetta, G. & Beach, D. Activation of cdc2 protein kinase during mitosis in human cells: cell cycle-dependent phosphorylation and subunit rearrangement. Cell 54, 17–26 (1988).

    Article  CAS  Google Scholar 

  68. Morla, A.O. Draetta, G. Beach, D. & Wang, J.Y. Reversible tyrosine phosphorylation of cdc2: dephosphorylation accompanies activation during entry into mitosis. Cell 58, 193–203 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itzhaki, J., Gilbert, C. & Porter, A. Construction by gene targeting in human cells of a ‘conditional’ CDC2 mutant that rereplicates its DNA. Nat Genet 15, 258–265 (1997). https://doi.org/10.1038/ng0397-258

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0397-258

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing