Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A recombination hotspot responsible for two inherited peripheral neuropathies is located near a mariner transposon-like element

A Correction to this article was published on 01 July 1998

Abstract

The Charcot-Marie Tooth disease type 1A (CMT1 A) duplication and hereditary neuropathy with liability to pressure palsies (HNPP) deletion are reciprocal products of an unequal crossing-over event between misaligned flanking CMT1A-REP repeats. The molecular aetiology of this apparently homologous recombination event was examined by sequencing the crossover region. Through the detection of novel junction fragments from the recombinant CMT1 A-REPs in both CMT1A and HNPP patients, a 1.7-kb recombination hotspot within the 30-kb CMT1 A-REPs was identified. This hotspot is 98% identical between CMT1 A-REPs indicating that sequence identity is not likely the sole factor involved in promoting crossover events. Sequence analysis revealed a mariner transposon-like element (MITE) near the hotspot which we hypothesize could mediate strand exchange events via cleavage by a transposase at or near the 3′ end of the element.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chance, P.F. et al. Two autosomal dominant neuropathies result from reciprocal DNA duplication/deletion of a region on chromosome 17. Hum. Mol. Genet. 3, 223–228 (1994).

    Article  CAS  Google Scholar 

  2. Lupski, J.R., Garcia, C.A., Parry, G.J. & Patel, P.L., Charcot-Marie-Tooth polyneuropathy syndrome: clinical electrophysiologic and genetic aspects. In Current Neurology (ed. Appel, S.) 1–25 (Mosby Yearbook, Chicago, 1991).

    Google Scholar 

  3. Kaku, D.A., Parry, G.J., Malamut, R., Lupski, J.R. & Garcia, C.A. Nerve conduction studies in Charcot-Marie-Tooth polyneuropathy associated with a segmental duplication of chromosome 17. Neurology 43, 1806–1808 (1993).

    Article  CAS  Google Scholar 

  4. De Jong, J.G.Y. Over families met hereditaire dispositie tot het optreden van neuritiden gecorreleered met migraine. Psychiat. Neurol. Bull. 50, 60–76 (1947).

    CAS  Google Scholar 

  5. Davis, D.M. Recurrent peripheral-nerve palsies in a family. Lancet 2, 266–268 (1954).

    Article  Google Scholar 

  6. Lupski, J.R., Chance, R.F. & Garcia, C.A. Inherited primary peripheral neuropathies: molecular genetics and clinical implications of CMT1A and HNPP. JAMA 17, 2326–2330 (1993).

    Article  Google Scholar 

  7. Roa, B.B. & Lupski, J.R. Molecular genetics of Charcot-Marie-Tooth neuropathy. In Advances in Human Genetics (eds Harris, H. & Hirschhorn, K.) 117–152 (Plenum Press, New York, 1994).

    Chapter  Google Scholar 

  8. Lupski, J.R. et al. DNA duplication associated with Charcot-Marie-Tooth disease type 1 A. Cell. 66, 219–232 (1991).

    Article  CAS  Google Scholar 

  9. Raeymaekers, R. et al. Duplication in chromosome 17p11.2 in Charcot-Marie- Tooth neuropathy type 1a (CMT1a). Neuromusc. Diosord. 1, 93–97 (1991).

    Article  CAS  Google Scholar 

  10. Raeymaekers, R. et al. Estimation of the size of the chromosome 17p11.2 duplication in Charcot-Marie-Tooth neuropathy type 1a (CMTIa). J. Med. Genet. 29, 5–11 (1992).

    Article  CAS  Google Scholar 

  11. Ionasescu, V.V., Ionasescu, R., & Searby, C. Screening of dominantly inherited Charcot-Marie-Tooth neuropathies. Muscle Nerve 16, 1232–1238 (1993).

    Article  CAS  Google Scholar 

  12. Lupski, J.R., Pentao, L., Williams, L.L. & Patel, P.I. Stable inheritance of the CMT1A DNA duplication in two patients with CMT1 and NF1. Am. J. Med. Genet. 45, 92–96 (1993).

    Article  CAS  Google Scholar 

  13. Wise, C.A. et al. Molecular analyses of unrelated Charcot-Marie-Tooth (CMT) disease patients suggest a high frequency of the CMT1A duplication. Am. J. Hum. Genet. 53, 853–863 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Nelis, E. et al. Estimation of the mutation frequencies in Charcot-Marie-Tooth disease type 1 (CMT1) and hereditary neuropathy with liability to pressure palsies (HNPP): a European collaborative study. Eur. J. Hum. Genet. (in the press).

  15. Pentao, L., Wise, C.A., Chinault, A.C., Patel, P. & Lupski, J.R. Charcot-Marie-Tooth type 1A duplication appears to arise from recombination at repeat sequences flanking the 1.5 Mb monomer unit. Nature Genet. 2, 292–300 (1992).

    Article  CAS  Google Scholar 

  16. McKusick, V.A. Mendelian Inheritance in Man (The Johns Hopkins University Press, Baltimore, 1994).

    Google Scholar 

  17. Hoogendijk, J.E. et al. De-novo mutation in hereditary motor and sensory neuropathy type 1. Lancet. 339, 1081–1082 (1992).

    Article  CAS  Google Scholar 

  18. Chance, P.P. et al. DNA deletion associated with hereditary neuropathy with I lability to pressure palsies. Cell 72, 143–151 (1993).

    Article  CAS  Google Scholar 

  19. Lorenzetti, D. et al. A 1.5 Mb deletion in 17p11.2–p12 is frequently observed in Italian families with hereditary neuropathy with liability to pressure palsies. Am. J. Hum. Genet. 56, 91–98 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Roa, B., Ananth, U., Garcia, C.A. & Lupski, J.R., Diagnosis of CMTIAand HNPP. Lab. Med. Int. 12, 22–24 (1995).

    Google Scholar 

  21. Matsunami, N. et al. Peripheral myelin protein-22 gene maps in the duplication in chromosome 17p11.2 associated with Charcot-Marie-Tooth 1 A. Nature Genet. 1, 176–179 (1992).

    Article  CAS  Google Scholar 

  22. Patel, P. et al. The gene for the peripheral myelin protein PMP-22 is a candidate for Charcot-Marie-Tooth disease type 1A. Nature Genet. 1, 159–165 (1992).

    Article  CAS  Google Scholar 

  23. Timmerman, V. et al. The peripheral myelin protein gene PMP22 is contained within the Charcot-Marie-Tooth disease type 1A duplication. Nature Genet. 1, 171–175 (1992).

    Article  CAS  Google Scholar 

  24. Valentijn, L.J. et al. The peripheral myelin gene PMP22/GAS-3 is duplicated in Charcot-Marie-Tooth disease type 1A. Nature Genet. 1, 166–170 (1992).

    Article  CAS  Google Scholar 

  25. Patel, P.I. & Lupski, J.R. Charcot-Marie-Tooth disease: a new paradigm for the mechanism of inherited disease. Trends Genet. 10, 128–133 (1994).

    Article  CAS  Google Scholar 

  26. Palau, F. et al. Origin of the de novo duplication in Charcot-Marie-Tooth disease type 1A: unequal nonsister chnomatid exchange during spermatogenesis. Hum. Mol. Genet. 2, 2031–2035 (1993).

    Article  CAS  Google Scholar 

  27. Hertz, J.M., Barglum, A.D., Brandt, C.A., Flint, T. & Bisgaard, C. Charcot-Marie-Tooth disease type 1A: the parental origin of a de novo 17p11. 2–p12 duplication. Clinical Genet. 48, 291–294 (1994).

    Google Scholar 

  28. LeGuern, E. et al. Constant rearrangement of the CMT1A-REP sequences in HNPP patients with a deletion in chromosome 17p11.2: A study of 30 unrelated cases. Hum. Mol. Genet. 4, 1673–1674 (1995).

    Article  CAS  Google Scholar 

  29. Timmerman, V. et al. Molecular genetic analysis of the 17p11.2 region in patients with hereditary neuropathy with liability to pressure palsies (HNPP). Hum. Genet. 97, 26–34 (1996).

    Article  CAS  Google Scholar 

  30. Kiyosawa, H., Lensch, M.W. & Chance, R.F. Analysis of the CMT1A-REP repeat: mapping crossover breakpoints in CMT1A and HNPP. Hum. Mol. Genet. 4, 2327–2334 (1995).

    Article  CAS  Google Scholar 

  31. Roa, B. et al. Evidence for a recessive PMP22 point mutation in Charcot-Marie-Tooth disease type 1 A. Nature Genet. 5, 189–194 (1993).

    Article  CAS  Google Scholar 

  32. Andersson, B. et al. Adaptor-based uracil DNA glycosylase cloning simplifies shotgun library construction for large-scale sequencing. Anal. Biochem. 218, 300–308 (1994).

    Article  CAS  Google Scholar 

  33. Devereux, J., Haeberli, R. & Smithies, o. A comprehensive set of sequence analysis programs for the VAX. Nucl. Acids Res. 12, 387–395 (1984).

    Article  CAS  Google Scholar 

  34. Smit, A.F.A., TÓth, G., Riggs, A.D. & Jurka, J. Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. J. Mol. Biol. 246, 401–417 (1995).

    Article  CAS  Google Scholar 

  35. Jurka, J., Klonowski, R., Dagman, V. & Pelton, P. CENSOR — a program for identification and elimination of repetitive elements from DNA sequences. Comp. Cnem. (in the press)

  36. Jurka, J. Novel families of intespersed repetitive elements from the human genome. Nucl. Acids Res. 18, 137–141 (1990).

    Article  CAS  Google Scholar 

  37. Metzenberg, A.B., Wurzer, G., Huisman, T.H.J. & Smithies, O. Homology requirements for unequal crossing over in humans. Genetics. 128, 143–161 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Uberbacher, E.G. & Mural, R.J. Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. Proc. Natl. Acad. Sci. USA 88, 11261–11265 (1991).

    Article  CAS  Google Scholar 

  39. Worley, K.C., Wiese, B.A. & Smith, R.A. BEAUTY: an enhanced BLAST-based search tool that integrates multiple biological information resources into sequence similarity search results. Genome Res. 5, 173–184 (1995).

    Article  CAS  Google Scholar 

  40. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  41. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  42. Robertson, H.M. The mariner transposable element is widespread in insects. Nature 362, 241–245 (1993).

    Article  CAS  Google Scholar 

  43. Smit, A.F.A. & Riggs, A.D. Tiggers and other DNA transposon fossils in the human genome. Proc. Natl. Acad. Sci. USA. (in the press)

  44. Oosumi, T., Belknap, W.R. & Garlick, B. Mariner transposons in humans. Nature 378, 672 (1995).

    Article  CAS  Google Scholar 

  45. Lupski, J.R., Roth, J.R. & Weinstock, G.M. Chromosomal duplications in bacteria, fruit flies, and humans. Am. J. Hum. Genet. 58, 21–27 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yen, R.H. et al. Frequent deletions of the human X chromosome distal short arm result from recombination between low copy repetitive elements. Cell 61, 603–610 (1990).

    Article  CAS  Google Scholar 

  47. Ballabio, A., Bardoni, B., Guioli, S., Easier, E. & Camerino, G. Two families of low-copy-number repeats are interspersed on Xp22.3: Implications for the high frequency of deletions in this region. Genomics. 8, 263–270 (1990).

    Article  CAS  Google Scholar 

  48. Li, X.-M., Yen, R.H. & Shapiro, L. Characterization of a low copy repetitive element S232 involved in the generation of frequenct deletions of the distal short arm of the human X chromosome. Nucl. Acids Res. 20, 1117–1122 (1992).

    Article  CAS  Google Scholar 

  49. Wahls, W.R., Wallace, L.J. & Moore, R.D. Hypervariable minisatellite DNA is a hotspot for homologus recombination in human cells. Cell. 60, 95–103 (1990).

    Article  CAS  Google Scholar 

  50. Lakich, D., Kazazian, H.H. Jr., Antonarakis, S.E. & Gitschier, J. Inversions disrupting the factor VIII gene are a common cause of severe haemophilia A. Nature Genet. 5, 236–241 (1993).

    Article  CAS  Google Scholar 

  51. Smit, A.F.A. Identification of a new, abundant superfamily of mammalian LTR- transposons. Nucl. Acids Res. 21, 1863–1872 (1993).

    Article  CAS  Google Scholar 

  52. Jacobson, J.W., Medhora, M.M. & Hartl, D.L. Molecular structure of a somatically unstable transposable element in Drosophila. Proc. Natl. Acad. Sci. USA 83, 8684–8688 (1986).

    Article  CAS  Google Scholar 

  53. Robertson, H.M. & MacLeod, E.G. Five major subfamilies of mariner transposable elements in insects, including the Mediterranean fruit fly, and related arthropods. Insect. Mol. Biol. 2, 125–139 (1993).

    Article  CAS  Google Scholar 

  54. McCarron, M., Duttaroy, A., Doughty, G. & Chovnick, A. Drosophila P element transposase induces male recombination addititvely and without a requirement for P element excision or insertion. Genetics. 136, 1013–1023 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lidholm, D.-A., Lohe, A.R. & Hartl, D.L. The transposable element mariner mediates germline transformation in Drosophila melanogaster. Genetics. 134, 859–868 (1993).

    Google Scholar 

  56. Garza, D., Medhora, M., Koga, A. & Hartl, D.L. Introduction of the transposable element mariner into the germline of Drosophila melanogaster. Genetics. 128, 303–310 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Maruyama, K. & Hartl, D.L. Evidence for interspecific transfer of the transposable element mariner between Drosophila and Zaprionus. J. Mol. Evol. 33, 514–524 (1991).

    Article  CAS  Google Scholar 

  58. Capy, P., David, J.R. & Hartl, D.L. Evolution of the transposable element mariner in the Drosophila melanogaster species group. Genetics 86, 37–46 (1992).

    CAS  Google Scholar 

  59. Lohe, A.R., Moriyama, E.N., Lindholm, D.-A. & Hartl, D.L. Horizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements. Mol. Biol. Evol. 12, 62–72 (1995).

    Article  CAS  Google Scholar 

  60. Lohe, A.R., Lindholm, D.-A. & Hartl, D.L. Genotypic effects, maternal effects and grand-maternal effects of immobilized derivatives of the transposable element mariner. Genomics. 140, 183–192 (1995).

    CAS  Google Scholar 

  61. Reisecker, F. et al. A sporadic form of hereditary neuropathy with liability to pressure palsies: clinical, electrodiagnostic, and molecular genetic findings. Neurology 44, 753–755 (1994).

    Article  CAS  Google Scholar 

  62. Rossiter, J.R. et al. Factor VIII gene inversions causing severe hemophilia A originate almost exclusively in male germ cells. Hum. Mol. Genet. 3, 1035–1039 (1994).

    Article  CAS  Google Scholar 

  63. Kallioniemi, O.-R. et al. Physical mapping of chromosome 17 cosmids by fluorescence in situ hybridization and digital image analysis. Genomics 20, 125–128 (1994).

    Article  CAS  Google Scholar 

  64. Sambrook, J., Fritsch, E. & Maniatis, T. T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Press, Cold Spring Harbor, 1989).

    Google Scholar 

  65. Muzny, D.M., Richards, S., Shen, Y. & Gibbs, R.A. PCR based strategies for gap closure in large-scale sequencing projects. In Automated DNA Sequencing and Analysis (ed. Adams, M.A.) 182–190 (Academic Press, London, 1994).

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiter, L., Murakami, T., Koeuth, T. et al. A recombination hotspot responsible for two inherited peripheral neuropathies is located near a mariner transposon-like element. Nat Genet 12, 288–297 (1996). https://doi.org/10.1038/ng0396-288

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0396-288

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing