Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A mutant p53 transgene accelerates tumour development in heterozygous but not nullizygous p53–deficient mice

Abstract

To test the behaviour of a mutant form of p53 in the presence and absence of wild–type p53 in vivo, we mated p53–deficient mice containing a p53 null allele to transgenic mice containing multiple copies of a mutant p53 gene (Val 135). Animals hemizygous for the endogenous wild–type p53 gene with the mutant transgene exhibited accelerated tumour development and an altered tumour spectrum compared to their non–transgenic counterparts. In contrast, transgenic and non–transgenic animals nullizygous for endogenous p53 developed tumours at the same rate. Thus, the mutant Val–135 p53 allele may act in vivo in a dominant negative manner in the presence of wild–type p53 but does not display gain of function activity in the absence of wild–type p53.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mowat, M., Cheng, A., Kimura, N., Bernstein, A. & Benchimol, S. Rearrangements of the Cellular p53 gene In erythroleukemic cells transformed by Friend virus. Nature 314, 633–636 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Ben-David, Y. & Bernstein, A. Friend virus-induced erythroleukaemia and the multistage nature of cancer. Cell 66, 831–834 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C.C. p53 mutations in human cancers. Science 252, 49–53 (1991).

    Article  Google Scholar 

  4. Greenblatt, M.S., Bennett, W.P., Hollstein, M. & Harris, C.C. Mutations in the p53 tumour suppressor gene: Clues to cancer etiology and molecular pathogenesis. Cancer Res. 54, 4855–4878 (1994).

    CAS  PubMed  Google Scholar 

  5. Lane, D.P. p53 and human cancers. B. Med. Bull. 50, 582–599 (1994).

    Article  CAS  Google Scholar 

  6. Masuda, H., Miller, C., Koeffler, H.P., Battifora, H. & Cline, M.J. Rearrangement of the p53 gene in human osteogenic sarcomas. Proc. natn. Acad. Scl. U.S.A. 84, 7716–7719 (1987).

    Article  CAS  Google Scholar 

  7. Nigro, J.M. et al. Mutations in the p53 gene occur in diverse tumour types. Nature 342, 705–708 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Caron de Fromentel, C. & Soussi, T. TP53 tumour suppressor gene: A model for investigating human mutagenesis. Genes, Chrom. Cancer 4, 1–15 (1992).

    Article  CAS  Google Scholar 

  9. Cho, Y., Gorina, S., Jeffrey, P.D. & Pavletich, N.P. Crystal structure of a p53 tumour suppressor-DNA complex: Understanding tumorigenic mutations. Science 265, 346–355 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Malkin, D. et al. Germline p53 mutations In a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250, 1233–1238 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Srivastava, S., Zou, Z., Pirollo, K., Blattner, W. & Chang, E.H. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature 348, 747–749 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Malkin, D. p53 and the Li-Fraumeni Syndrome. Cancer Genet. Cytogenet. 66, 83–92 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Kuerbitz, S.J., Plunkett, B.S., Walsh, W.V. & Kastan, M.B. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc. natn. Acad. Sci. U.S.A. 89, 7491–7495 (1992).

    Article  CAS  Google Scholar 

  14. Kastan, M.B., Onyekwere, O., Sidransky, D., Vogelstein, B. & Craig, R.W. Participation of p53 protein in the Cellular response to DNA damage. Cancer Res. 51, 6304–6311 (1991).

    CAS  PubMed  Google Scholar 

  15. Kastan, M.B. et al. A mammalian cell cyde checkpoint pathway utilizing p53 and GADD45 is affective in ataxia-telangiectasia. Cell 71, 587–597 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Yonish-Rouach, E. et al. Wild-type p53 Induces apoptosis of myeloid leukaemic cells that is inhibited by interieukin-6. Nature 352, 345–347 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Clarke, A.R. et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849–852 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Lowe, S.W., Schmitt, E.M., Smith, S.W., Osborne, B.A. & Jacks, T. p53 is required for radiation-induced apoptosis In mouse thymocytes. Nature 362, 847–849 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Lee, J.M. & Bernstein, A. p53 mutations increase resistance to ionizing radiation. Proc. natn. Acad. Sci. U.S.A. 90, 5742–5746 (1993).

    Article  CAS  Google Scholar 

  20. Lowe, S.W., Ruley, H.E., Jacks, T. & Housman, D.E. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957–967 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Harper, J.W., Adami, G.R., Wei, N., Keyomarsi, K. & Elledge, S.J. The p21 cdk-lnteractlng protein cip1 Is a potent Inhibitor of G1 cyclin-dependent kinases. Cell 75, 805–816 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. El-Deiry, W.S. et al. WAF1, a potential mediator of p53 tumour suppression. Cell 75, 817–825 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Michalovitz, D., Halevy, O. & Oren, M., Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell 62, 671–680 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Martinez, J., Georgoff, I., Martinez, J. & Levine, A.J. Cellular localization and cell cycle regulation by a temperature-sensitive p53 protein. Genes Dev. 5, 151–159 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Farmer, G. et al. Wild-type p53 activates transcription in vitro. Nature 358, 83–86 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Kern, S.E. et al. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 256, 827–830 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Milner, J., Medcalf, E.A. & Cook, A.C. Tumour suppressor p53: Analysis of wild-type and mutant p53 complexes. Molec. Cell. Biol. 11, 12–19 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Milner, J. & Medcalf, E.A. Cotranslation of activated mutant p53 with wild-type drives the wild-type p53 protein into the mutant conformation. Cell 65, 765–774 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Wolf, D., Harris, N. & Rotter, V. Reconstitution of p53 expression in a nonproducer Ab-MuLV-transformed cell line by transfection of a functional p53 gene. Cell 38, 119–126 (1984).

    Article  CAS  PubMed  Google Scholar 

  30. Shaulsky, G., Goldfinger, N. & Rotter, V. Alterations in tumour development in vivo mediated by expression of wild-type or mutant p53 proteins. Cancer Res. 51, 5232–5237 (1991).

    CAS  PubMed  Google Scholar 

  31. Dittmer, D. et al Gain of function mutations in p53. Nature Genet. 4, 42–46 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Halevy, O., Michalovitz, D. & Oren, M. Different tumour-derived p53 mutants exhibit distinct biological activities. Science 250, 113–116 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Hinds, P.W. et al. Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells: a comparison of the “hot spot” mutant phenotypes. Cell Growth Differ. 1, 571–580 (1990).

    CAS  PubMed  Google Scholar 

  34. Chin, K.-V., Ueda, K., Pastan, I. & Gottesman, M.M. Modulation of activity of the promoter of the human MDR1 gene by ras and p53. Science 255, 459–462 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Deb, S., Jackson, C.T., Subler, M.A. & Martin, D.W. Modulation of cellular and viral promoters by mutant p53 proteins found in tumour cells. J. Virol. 66, 6164–6170 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lavigueur, A. et al. High incidence of lung, bone, and lymphold tumours In transgenic mice overexpressing mutant alleles of the p53 oncogene. Molec. Cell. Biol. 9, 3982–3991 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Donehower, L.A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Hinds, P., Finlay, C. & Levine, A.J. Mutation is required to activate the p53 gene for cooperation with the ras oncogne and transformation. J. Virol. 63, 739–746 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Finlay, C., Hinds, P.W. & Levine, A.J. The p53 proto-oncogene can act as a suppressor of transformation. Cell 57, 1083–1093.

    Article  CAS  PubMed  Google Scholar 

  40. Harvey, M. et al. Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nature Genet. 5, 225–229 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Jacks, T. et al. Tumour spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Purdie, C. et al. Tumour incidence, spectrum and ploidy in mice with a large deletion in the p53 gene. Oncogene 9, 603–609 (1994).

    CAS  PubMed  Google Scholar 

  43. Fearon, E. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. Kemp, C.J., Wheldon, T. & Balmain, A. p53-deficient mice are extremely susceptible to radiation-induced tumorigenesis. Nature Genet. 8, 66–69 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Ory, K., Legros, Y., Auguin, C. & Soussi, T. Analysis of the most representative tumour-derived p53 mutants reveals that changes In protein conformation are not correlated with loss of transactivation or Inhibition of cell proliferation. EMBO J. 13, 3496–3504 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Prosser, J., Thompson, A.M., Cranston, G. & Evans, H.J. Evidence that p53 behaves as a tumour suppressor gene in sporadic breast tumours. Oncogene 5, 1573–1579 (1990).

    CAS  PubMed  Google Scholar 

  47. Li, B. et al. Preferential overexpression of a 172Arg-Leu mutant p53 in the mammary gland of transgenic mice results in altered lobuloalveolar development. Cell Growth Diff. 5, 711–721 (1994).

    CAS  PubMed  Google Scholar 

  48. Sehgal, P.B. & Margulies, L. Cell type and promoter dependent phenotype of p53 Val 135. Oncogene 8, 3417–3419 (1993).

    CAS  PubMed  Google Scholar 

  49. Reed, K.C. & Mann, D.A. Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Res. 13, 7207–7221 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Harvey, M. et al. In vitro growth characteristics of embryo fibroblasts isolated from p53-deflclent mice. Oncogene 8, 2457–2467 (1993).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harvey, M., Vogel, H., Morris, D. et al. A mutant p53 transgene accelerates tumour development in heterozygous but not nullizygous p53–deficient mice. Nat Genet 9, 305–311 (1995). https://doi.org/10.1038/ng0395-305

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0395-305

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing