Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Genetics and epigenetics of hydatidiform moles

Human embryos that develop in the presence of chromosomes solely of paternal origin give rise only to a disorganized mass of placental derivatives known as a complete hydatidiform mole. A new study reports that mutations in NALP7, a gene thought to be involved in inflammatory and apoptotic pathways, occur in human females whose biparental conceptuses can develop as apparent complete moles.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A complete hydatidiform mole resulting from development in the presence of two sets of paternal chromosomes and no maternal chromosomes.

References

  1. Laplante, E. American Jezebel: The Uncommon Life of Anne Hutchinson, the Woman Who Defied the Puritans (HarperCollins, San Francisco, 2004).

    Google Scholar 

  2. Kajii, T. & Ohama, K. Nature. 268, 633–634 (1977).

    Article  CAS  Google Scholar 

  3. Mutter, G.L., Stewart, C.L., Chaponot, M.L. & Pomponio, R.J. Am. J. Hum. Genet. 53, 1096–1102 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Castrillon, D.H. et al. Am. J. Surg. Pathol. 25, 1225–1230 (2001).

    Article  CAS  Google Scholar 

  5. Mann, M.R. et al. Development 131, 3727–3735 (2004).

    Article  CAS  Google Scholar 

  6. Manes, C. & Menzel, P. Nature 293, 589–590 (1981).

    Article  CAS  Google Scholar 

  7. Rossant, J., Sanford, J.P., Chapman, V. & Andrews, G.K. Dev. Biol. 117, 567–573 (1986).

    Article  CAS  Google Scholar 

  8. Bourc'his, D. & Bestor, T.H. Cytogenet. Genome Res. (in the press).

  9. Judson, H., Hayward, B.E., Sheridan, E. & Bonthron, D.T. Nature 416, 539–542 (2002).

    Article  CAS  Google Scholar 

  10. Bourc'his, D., Xu, G.L., Lin, C.S., Bollman, B. & Bestor, T.H. Science 294, 2536–2539 (2001).

    Article  CAS  Google Scholar 

  11. Moglabey, Y.B. et al. Hum. Mol. Genet. 8, 667–671 (1999).

    Article  CAS  Google Scholar 

  12. Hodges, M.D., Rees, H.C., Seckl, M.J., Newlands, E.S. & Fisher, R.A. J. Med. Genet. 40, e95 (2003).

    Article  CAS  Google Scholar 

  13. Murdoch, S. et al. Nat. Genet. 38, 300–302 (2006).

    Article  CAS  Google Scholar 

  14. Tong, Z.B., Nelson, L.M. & Dean, J. Nat. Genet. 26, 267–268 (2000).

    Article  CAS  Google Scholar 

  15. Fisher, R.A. & Newlands, E.S. J. Reprod. Med. 43, 87–97 (1998).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bestor, T., Bourc'his, D. Genetics and epigenetics of hydatidiform moles. Nat Genet 38, 274–276 (2006). https://doi.org/10.1038/ng0306-274

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0306-274

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing