Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rnx deficiency results in congenital central hypoventilation

Abstract

The genes Tlx1 (Hox11), Enx (Hox11L1, Tlx-2 ) and Rnx (Hox11L2, Tlx-3) constitute a family of orphan homeobox genes1,2,3,4,5,6,7,8,9,10. In situ hybridization has revealed considerable overlap in their expression within the nervous system, but Rnx is singularly expressed in the developing dorsal and ventral region of the medulla oblongata. Tlx1-deficient and Enx-deficient mice display phenotypes in tissues where the mutated gene is singularly expressed, resulting in asplenogenesis3,4 and hyperganglionic megacolon8, respectively. To determine the developmental role of Rnx, we disrupted the locus in mouse embryonic stem (ES) cells. Rnx-deficient mice developed to term, but all died within 24 hours after birth from a central respiratory failure. The electromyographic activity of intercostal muscles coupled with the C4 ventral root activity assessed in a medulla-spinal cord preparation revealed a high respiratory rate with short inspiratory duration and frequent apnea. Furthermore, a coordinate pattern existed between the abnormal activity of inspiratory neurons in the ventrolateral medulla and C4 motorneuron output, indicating a central respiratory defect in Rnx−/− mice. Thus, Rnx is critical for the development of the ventral medullary respiratory centre and its deficiency results in a syndrome resembling congenital central hypoventilation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rnx expression in the developing embryo.
Figure 2: Rnx expression in the developing nervous system.
Figure 3: Generation of Rnx-deficient mice.
Figure 4: Respiratory distress in an Rnx−/− mouse.
Figure 5: Respiratory analysis.

Similar content being viewed by others

References

  1. Hatano, M., Roberts, C.W.M., Minden, M., Crist, W.M. & Korsmeyer, S.J. Deregulation of a homeobox gene, HOX11, by the t(10;14) in T-cell leukemia. Science 253, 79–82 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Kennedy, M.A. et al. HOX11, a homeobox-containing T-cell oncogene on human chromosome 10q24. Proc. Natl Acad. Sci. USA 88, 8900 –8904 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roberts, C.W.M., Shutter, J.R. & Korsmeyer, S.J. Hox11 controls the genesis of the spleen. Nature 368, 747–749 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  4. Dear, T.N. et al. The Hox11 gene is essential for cell survival during spleen development . Development 121, 2909– 2915 (1995).

    CAS  PubMed  Google Scholar 

  5. Dear, T.N., Sanchez-Garcia, I. & Rabbitts, T.H. The HOX11 gene encodes a DNA-binding nuclear transcriptional factor belonging to a distinct family of homeobox genes. Proc. Natl Acad. Sci. USA 90, 4431–4435 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roberts, C.W.M., Sonder, A.M., Lumsden, A. & Korsmeyer, S.J. Developmental expression of Hox11 and specification of splenic cell fate. Am. J. Pathol. 146, 1089–1101 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Raju, K. et al. Characterization and developmental expression of Tlx-1, the murine homolog of HOX11. Mech. Dev. 44, 51–64 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Shirasawa, S. et al. Enx (Hox11L1)-deficient mice develop myenteric neuronal hyperplasia and megacolon. Nature Med. 3, 646– 650 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Masson, M., Greene, W.K. & Rabbitts, T.H. Optimal activation of an endogeneous gene by HOX11 requires the NH2-terminal 50 amino acids. Mol. Cell. Biol. 18, 3502–3508 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Logan, C., Wingate, R.J.T., McKay, I.J. & Lumsden, A. Tlx-1 and Tlx-3 homeobox gene expression in cranial sensory ganglia and hindbrain of the chick embryo: markers of patterned connectivity. J. Neurosci. 18, 5389–5402 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bianchi, A.L., Denavit-Saubie, M. & Champagnat, J. Central control of breathing in mammals: neuronal circuitry, membrane properties and neurotransmitters. Am. Phys. Soc. 75, 1–45 (1995).

    CAS  Google Scholar 

  12. Suzue, T. Respiratory rhythm generation in the in vitro brain stem-spinal cord preparation of the neonatal rat. J. Physiol. 354, 173 –183 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Onimaru, H. Studies of the respiratory center using isolated brainstem-spinal cord preparations . Neurosci. Res. 21, 183– 190 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Arata, A., Onimaru, H. & Homma, I. Respiration-related neurons in the ventral medulla of newborn rats in vitro. Brain Res. Bull. 24, 599–604 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Rickling, J.C., Champagnat, J. & Denavit-Saubie, M. Electroresponsive properties and membrane potential trajectories of three types of inspiratory neurons in the newborn mouse brain stem in vitro. J. Neurophysiol. 75, 795– 810 (1996).

    Article  Google Scholar 

  16. Jacquin, T.D. et al. Reorganization of pontine rhythmogenic neuronal networks in Krox-20 knockout mice. Neuron 17, 747– 758 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Verloes, A. et al. Ondine-Hirschsprung syndrome (Haddad syndrome). Further delineation in two cases and review of the literature. Eur. J. Pediatr. 152, 75–77 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Mellins, R.B., Balfour, H.H., Turino, G.M. & Winters, R.W. Failure of automatic control of ventilation (Ondine's curse) report of an infant born with this syndrome and review of the literature. Medicine 49, 487–504 ( 1970).

    Article  CAS  PubMed  Google Scholar 

  19. Weese-Mayer, D.E., Silvestri, J.M., Marazita, M.L. & Hoo, J.J. Congenital central hypoventilation syndrome: inheritance and relation to sudden infant death syndrome. Am. J. Med. Genet. 47, 360–367 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Bolk, S. et al. Endothelin-3 frameshift mutation in congenital central hypoventilation syndrome. Nature Genet. 13, 395– 396 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Amiel, J. et al. Mutations of the RET-GDNF signaling pathway in Ondine's curse . Am. J. Hum. Genet. 62, 715– 717 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakahara, S., Yokomori, K., Tamura, K., Oku, K. & Tsuchida, Y. Hirschsprung disease associated with Ondine's curse: a special subgroup? J. Pediatr. Surg. 30, 1481–1484 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Lumsden, A., Clarke, J.D.W., Keynes, R. & Fraser, S. Early phenotypic choices by neuronal precursors, revealed by clonal analysis of the chick embryo hindbrain. Development 120, 1581–1589 (1994).

    CAS  PubMed  Google Scholar 

  24. McGinnis, W. & Krumlauf, R. Homeobox genes and axial patterning . Cell 68, 283–302 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Rubenstein, J.L.R. & Puelles, L. Homeobox gene expression during development of the vertebrate brain. Curr. Top. Dev. Biol. 29, 1–63 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  26. Onimaru, H., Arata, A. & Homma, I. Primary respiratory rhythm generator in the medulla of brainstem-spinal cord preparation from newborn rat. Brain Res. 445, 314–324 ( 1988).

    Article  CAS  PubMed  Google Scholar 

  27. Onimaru, H. & Homma, I. Whole cell recordings from respiratory neurons in the medulla of brainstem-spinal cord preparations isolated from newborn rats. Plugers Arch. 420, 399– 406 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Maher and E. Smith for preparation of this manuscript; and K. Ezure for encouragement and discussion. This research was supported in part by Grant-In-Aid for Exploratory Research from Japan Society for the Promotion of Science (to A.A.) and Grant-In-Aid for Scientific Research on Priority Areas (to S.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley J. Korsmeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shirasawa, S., Arata, A., Onimaru, H. et al. Rnx deficiency results in congenital central hypoventilation. Nat Genet 24, 287–290 (2000). https://doi.org/10.1038/73516

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/73516

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing