Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Retinopathy induced in mice by targeted disruption of the rhodopsin gene

Abstract

Retinitis pigmentosa (RP) represents the most common mendelian degenerative retinopathy of man, involving death of rod photoreceptors, cone cell degeneration, retinal vessel attenuation and pigmentary deposits1,2. The patient experiences night blindness, usually followed by progressive loss of visual field. Genetic linkage between an autosomal dominant RP locus and rhodopsin3, the photoreactive pigment of the rod cells, led to the identification of mutations within the rhodopsin gene in both dominant and recessive forms of RP3–7. To better understand the functional and structural role of rhodopsin in the normal retina and in the pathogenesis of retinal disease, we generated mice carrying a targeted disruption of the rhodopsin gene. Rho−/− mice do not elaborate rod outer segments, losing their photoreceptors over 3 months. There is no rod ERG response in 8-week-old animals. Rho+/− animals retain the majority of their photoreceptors although the inner and outer segments of these cells display some structural disorganization, the outer segments becoming shorter in older mice. These animals should provide a useful genetic background on which to express other mutant opsin transgenes, as well as a model to assess the therapeutic potential of re-introducing functional rhodopsin genes into degenerating retinal tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Heckenlively, J.R. Retinitis Pigmentosa. 125–149 (J.B. Lippincott, Philadelphia, 1988).

  2. Pagon, R.A. Retinitis pigmentosa. Surv. Ophthalmol. 33, 137–177 (1988).

    Article  CAS  Google Scholar 

  3. McWilliam, P. et al. Autosomal dominant retinitis pigmentosa: localization of an adRP gene to the long arm of chromosome 3. Genomics 5, 619–622 (1989).

    Article  CAS  Google Scholar 

  4. Dryja, T.D. et al. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 343, 364–366 (1990).

    Article  CAS  Google Scholar 

  5. Humphries, P., Kenna, P. & Farrar, G.J. On the molecular genetics of retinitis pigmentosa. Science, 256, 804–808 (1992).

    Article  CAS  Google Scholar 

  6. McLaughlin, M.E., Sandberg, M.A., Berson, E.L. & Dryja, T.P. Recessive mutations in the gene encoding the beta-subunit of rod phosphodiesterase in patients with retinitis pigmentosa. Nature Genet. 4, 130–133 (1993).

    Article  CAS  Google Scholar 

  7. Dryja, T.P., Finn, J.T., Peng, Y.-W., McGee, T.L. & Berson, E.L. Mutations in the gene encoding the alpha-subunit of the rod cGMP-gated channel in autosomal recessive retinitis pigmentosa. Proc. Natl. Acad. Sci. USA 92, 10177–10181 (1995).

    Article  CAS  Google Scholar 

  8. Carter-Dawson, L.D. & LaVail, M.M. Rods and cones in the mouse retina I. Structural analysis using light and electron microscopy. J. Comp. Neurol. 188, 245–262 (1979).

    Article  CAS  Google Scholar 

  9. Hicks, D. & Molday, R.S. Differential immunogold-dextran labeling of bovine and frog rod and cone cells using monoclonal antibodies against bovine rhodopsin. Exp. Eye Res. 42, 55–71 (1986).

    Article  CAS  Google Scholar 

  10. Brown, K.T. The electroretinogram: Its components and their origins. Vision Res. 8, 633–677 (1968).

    Article  CAS  Google Scholar 

  11. Steinberg, R.H., Frishman, L.J. & Sieving, A.P. Negative components of the electroretinogram from proximal retina and photoreceptor. in Progress in Retinal Research, Vol. 10 (eds Osborne, N. & Chader, G.) 121–160 (Pergamon, New York, 1991).

    Google Scholar 

  12. Penn, R.D. & Hagins, W.A. Signal transmission along retinal rods and the origin of the a-wave. Nature 223, 201–205 (1969).

    Article  CAS  Google Scholar 

  13. Stockton, R.A. & Slaughter, M.M. B-wave of the electroretinogram: a reflection of on bipolar cell activity. J. Gen. Physiol. 93, 101–122 (1989).

    Article  CAS  Google Scholar 

  14. Sieving, P.A., Fishman, L.J. & Steinberg, R.H. Scotopic threshold response of proximal retina in cat. J. Neurophysiol. 56, 1049–1061 (1986).

    Article  CAS  Google Scholar 

  15. Aguilar, M. & Stiles, W.S. Saturation of the rod mechanism of the retina at high levels of stimulation. Opt. Acta. 1, 59–63 (1954).

    Article  Google Scholar 

  16. Peachy, N.S. et al. Properties of the mouse cone-mediated electroretinogram during light adaptation. Neurosd. Lett. 162, 9–11 (1993).

    Article  Google Scholar 

  17. Sieving, P.A., Murayama, K. & Naarendorp, F. Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Visual Neurosd. 11, 519–532 (1994).

    Article  CAS  Google Scholar 

  18. Sieving, P.A. & Nino, C. Scotopic threshold response (SIR) of the human electroretinogram. Invest. Ophthalmol. VisualSd. 29, 1608–1614 (1988).

    CAS  Google Scholar 

  19. Bush, R.A. & Remé, C.E. Chronic lithium treatment induces reversible and irreversible changes in the rat ERG in vivo. Clin. Vision. Sd. 7, 393–401 (1992).

    Google Scholar 

  20. Sieving, P.A. & Wakabayashi, K. Comparison of rod threshold ERG from monkey, cat and human. Clin. Vision. Sd. 6, 171–179 (1991).

    Google Scholar 

  21. Bush, R.A., Hawks, K.W. & Sieving, P.A. Preservation of inner retinal responses in aged royal college of surgeons rat: evidence against glutamate excitotoxicity in photoreceptor degeneration. Invest. Ophthalmol. Visual Sci. 36, 2054–2062 (1995).

    CAS  Google Scholar 

  22. Green, D.G. Herreros de Tejada, P. & Glover, M.J. Electrophysiological estimates of visual sensitivity in albino and pigmented mice. Visual Neurosci. 11, 919–925 (1994).

    Article  CAS  Google Scholar 

  23. Deng, C., Thomas, K.R. & Capecchi, M.R. Location of crossovers during gene targeting with insertion and replacement vectors. Mol. Cell. Biol. 13, 2134–2140 (1993).

    Article  CAS  Google Scholar 

  24. Davis, A.P. & Capecchi, M.R. Axial homeosis and appendicular skeleton defects in mice with a targeted disruption of hoxd-11. Development 120, 2187–2198 (1994).

    CAS  Google Scholar 

  25. Mansour, S.M., Thomas, K.R. & Capecchi, M.R. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352 (1988).

    Article  CAS  Google Scholar 

  26. Thomas, K.R. & Capecchi, M.R. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346, 847–850 (1990).

    Article  CAS  Google Scholar 

  27. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning, 2nd edn. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humphries, M., Rancourt, D., Farrar, G. et al. Retinopathy induced in mice by targeted disruption of the rhodopsin gene. Nat Genet 15, 216–219 (1997). https://doi.org/10.1038/ng0297-216

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0297-216

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing