Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Peg3 imprinted gene on proximal chromosome 7 encodes for a zinc finger protein

Abstract

Genetic and embryological studies in the mouse demonstrated functional differences between parental chromosomes during development1–3. This is due to imprinted genes whose expression is dependent on their parental origin4,5. In a recent systematic screen for imprinted genes, we detected Peg3 (paternally expressed gene 3)6. Peg3 is not expressed in parthenogenones. In interspecific hybrids, only the paternal copy of the gene is expressed in the embryos, individual tissues examined in d9.5–13.5 embryos, neonates and adults. Peg3 mRNA is a 9 kb transcript encoding an unusual zinc finger protein with eleven widely spaced C2H2 type motifs and two groups of amino acid repeats. Peg3 is expressed in early somites, branchial arches and other mesodermal tissues, as well as in the hypothalamus. Peg3 maps to the proximal region of chromosome 7. Consistent with our findings, maternal duplication of the proximal chromosome 7 causes neonatal lethality7–9. This region is syntenic with human chromosome 19q13.1–13.3 (refs 10,11), where the genes for myotonic dystrophy and a putative tumour suppressor gene are located12,13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cattanach, B.M. & Jones, J. Genetic imprinting in the mouse: Implications for gene regulation. J. Inter. Metab. Dis. 17, 403–420 (1994).

    Article  CAS  Google Scholar 

  2. McGrath, J. & Solter, D. Completion of mouse embryogenesis requires both the materal and paternal genomes. Cell. 37, 179–183 (1984).

    Article  CAS  PubMed  Google Scholar 

  3. Surani, M.A., Barton, B.C. & Morris, M.L. Nuclear transplantation in the mouse: heritable differences between parental genomes after activation of the embryonic genome. Cell 45, 127–136 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Reik, W. Genomic imprinting and genetic disorders in man. Trends Genet. 5, 331–336 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Efstratiadis, A. Parental imprinting of autosomal mammalian genes. Curr. Opin. Genet. Dev. 4, 265–280 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Kaneko-lshino, T. et al. Peg1/Mest imprinted gene on mouse chromosome 6 identified by cDNA subtraction hybridization. Nature Genet. 11, 52–59 (1995).

    Article  Google Scholar 

  7. Searle, A.G. & Beechey, C.V. Genome imprinting phenomena on mouse chromosome 7. Genet. Res. 56, 237–244 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Cattanach, B.M. et al. A candidate mouse model for Prader-Willi syndrome which shows an absence of Snrpn expression. Nature Genet. 2, 270–274 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Barr, J.A., Jones, J., Glenister, P.H & Cattanach, B.M. (1995) Ubiquitous expression and imprinting of Snrpn in the mouse. Mammalian Genome 6, 405–407 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Brown, S.D.M., Chartier, F., Johnson, K. & Cavanna, J.S. Mapping the Hrc gene to proximal mouse chromosome 7: Delineation of a conserved linkage group with human 19q. Genomics. 18, 459–461 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Jansen, G. et al. No imprintng involved in the expression of DM-kinase mRNA in mouse and human tissues. Hum. Mol. Genet. 8, 1221–1227 (1993).

    Article  Google Scholar 

  12. Rubio, M-P et al. The putative glioma tumor suppressor gene on chromosome 19q maps between APOC2 and HRC. Cancer Res. 54, 4760–4763 (1994).

    CAS  PubMed  Google Scholar 

  13. Yong, W.H. et al. Chromosome 19q deletions in human gliomas overlap telomeric to D19S219 and may target a 425 kb region centromeric to D19S112. J Neuropath. & Exp. Neurol. 54, 622–626 (1995).

    Article  CAS  Google Scholar 

  14. Jacobs, G.H. Determination of the base recognition positions of zinc fingers from sequence analysis. EMBO J. 11, 4507–4517 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pavletich, N.P. & Pabo, C.O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252, 809–817 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Pavletich, N.P. & Pabo, C.O. Crystal structure of a five-finger GLI-DNA complex: new perspectives on zinc fingers. Science. 261, 1701–1707 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Fairall, L., Schwabe, J.W., Chapman, L., Finch, J.T. & Rhodes, D. The crystal structure of a two zinc-finger peptide reveals an extension to the rules for zinc-finger/DNA recognition. Nature. 366, 483–487 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Tada, M. et at. Localization of mouse imprinted gene U2af1-rs1 to A3.2–4 band of chromosome 11 by FISH. Mammalian Genome. 5, 655–657 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Dietrich, W.F. et at. A genetic map of the mouse with 4,006 simple sequence length polymorphism. Nature Genet. 7, 220–245 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Leff, S.E. et at. Maternal imprinting of the mouse Snrpn gene and conserved linkage homology with the human Prader-Willi syndrome region. Nature Genet. 2, 259–264 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Mandel, J.-L. Questions of expansion. Nature Genet. 4, 8–9 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Barton, S.C., Ferguson-Smith, A.C., Fundele, R. & Surani, M.A. Influence of paternally imprinted genes on development. Development. 113, 679–688 (1991).

    CAS  PubMed  Google Scholar 

  23. Chomczynski, P.A. Reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. BioTechniques. 15, 532–536 (1993).

    CAS  PubMed  Google Scholar 

  24. Lawrence, J.B., Singer, R.H. & Marselle, L.M. Highly localised tracks of specific transcripts within interphase nuclei visualized by in situ hybridization. Cell. 57, 493–502 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Pinkel, D., Strume, T. & Gray, J.W. Cytogenetic analysis using quantitative, highly sensitive, fluorescence hybridization. Proc. Natl. Acad. Sci USA 83, 3583–3589 (1994).

    Google Scholar 

  26. Hayashizaki, Y. et al. A genetic linkage map of the mouse using Restriction Landmark Genomic Scanning (RLGS). Genetics. 138, 1207–1238 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bairoch, A. & Bucher, P. PROSITE: recent developments. Nucl. Acids Res. 22, 3583–3589 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Higgins, S.G. & Sharp, P.M. A package for performing multiple sequence alingnments on a microcomputer. Gene 73, 237–244 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Wilkinson, D.G. & Green, J. In situ hybridization and the three dimensional reconstruction of serial sections. In Postimplantation Mammalian Embryo, (eds Copp, A.J. & Cockroft, D.J.) 155–171 (Oxford IRL Press, 1990).

    Google Scholar 

  30. Gubbay, J. et al. Inverted repeat structure of the Sry locus in mice. Proc. Natl. Acad. Sci. USA 89, 7953–7957 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuroiwa, Y., Kaneko-Ishino, T., Kagitani, F. et al. Peg3 imprinted gene on proximal chromosome 7 encodes for a zinc finger protein. Nat Genet 12, 186–190 (1996). https://doi.org/10.1038/ng0296-186

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0296-186

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing