

A germline insertion in the tuberous sclerosis (*Tsc2*) gene gives rise to the Eker rat model of dominantly inherited cancer

Toshiyuki Kobayashi, Youko Hirayama, Etsuko Kobayashi, Yoshiaki Kubo & Okio Hino

Nature Genetics 9, 70-74 (1994)

Table 1 was inadvertently omitted. The table is shown below.

Table 1 Comparison of the principal features of the Eker rat model and tuberous sclerosis

	Eker rat	Tuberous sclerosis Autosomal dominant	
Inheritance	Autosomal dominant		
Defective gene	Tsc2	TSC1 and TSC2	
Clinical			
Renal lesion	100%, renal cell carcinoma	Often, angiomyolipoma Rare, renal cell carcinoma	
Skin lesion	No	Frequent, angiofibroma ungual fibroma	
Neurological abnormalities	No	Frequent, convulsion mental retardation	
Heart lesion	No	Often, rhabdomyoma	
Pituitary adenoma	Often	No	
Spleen tumour (probable hemangiosarcoma)	Often	No	
Uterus tumour (probable leiomyosarcoma	Often	No	

Establishing the identity of Anna Anderson Manahan

Peter Gill, Colin Kimpton, Rosemary Aliston-Greiner, Kevin Sullivan, Mark Stoneking, Terry Melton, Julian Nott, Suzanne Barrit, Rhonda Roby, Mitchell Holland & LTC Victor Weedn Nature Genetics 9, 9–10 (1994)

Due to a printing error, Table 1 and the order of authors were incorrectly published. The correct versions are shown below.

Table 1 Short tandem repeat STR results							
	VWA	TH01	F13A1	FES/FPS	ACTBP2	AMELOGENIN	
Tsar (Skeleton 4)ª	15,16	7,9,3⁵	7,7	12,12	11,32	X,Y	
Tsarina (Skeleton 7) ^a Anna Anderson	15,16	8,8	3.2°,5	12,13	32,36	X,X	
(intestine sample)	14,16	7,9.3	3.2,7	11,12	15,18	X,X	

aRef. 1.

Peter Gill
Colin Kimpton
Rosemary Aliston-Greiner
Kevin Sullivan
Service Development, The Forensic
Science Service, Priory House,
Birmingham B5 6QQ, UK

Mark Stoneking Terry Melton

Department of Anthropology, Pennsylvania State University, Pennsylvania 16802, USA

Julian Nott

Peninsula Films Ltd., 222 Kensal Rc London W10 5BN, UK

Suzanne Barritt Rhonda Roby Mitchell Holland LTC Victor Weedn, MC, USA

Armed Forces DNA Identificatio Laboratory, Office of the Armed Force Medical Examiner, Armed Force Institute of Pathology, Rockvill Maryland 20850, USA

b9.3 and 10 alleles are grouped and designated 9.3.

^{°3.2} allele was previously designated as a 3 allele under the old nomenclature.