Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Keratin 9 gene mutations in epidermolytic palmoplantar keratoderma (EPPK)

Abstract

We have isolated the gene for human type I keratin 9 (KRT9) and localised it to chromosome 17q21. Patients with epidermolytic palmoplantar keratoderma (EPPK), an autosomal dominant skin disease, were investigated. Three KRT9 mutations, N160K, R162Q, and R162W, were identified. All the mutations are in the highly conserved coil 1A of the rod domain, thought to be important for heterodimerisation. R162W was detected in five unrelated families and affects the corresponding residue in the keratin 14 and keratin 10 genes that is also altered in cases of epidermolysis bullosa simplex and generalised epidermolytic hyperkeratosis, respectively. These findings provide further evidence that mutations in keratin genes may cause epidermolysis and hyperkeratosis and that hyperkeratosis of palms and soles may be caused by different mutations in the KRT9 gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McKusick, V.A. Mendelian inheritance in man. 10 edn (Johns Hopkins University Press, Baltimore, 1992).

    Google Scholar 

  2. Vörner, H. Zur Kenntnis des Keratoma hereditarium palmare et plantare. Arch. Dermatol. Syph. (Berlin) 56, 3–31 (1901).

    Article  Google Scholar 

  3. Thost, A. Ueber erbliche Ichthyosis palmaris et plantaris cornea. (Diss., Heidelberg, 1880).

  4. Unna, P.G. Ueber das Keratoma palmare et plantare hereditarium. Arch. Dermatol. Syph. (Berlin) 15, 231–270 (1883).

    Article  Google Scholar 

  5. Küster, W. & Becker, A. Indication for the identity of palmoplantar keratoderma type Unna-Thost with type Vörner. Thost's family revisited 110 years later. Acta Derm. Venereol. (Stockh.) 72, 120–122 (1992).

    Google Scholar 

  6. Reis, A., Küster, W., Eckardt, R. & Sperling, K. Mapping of a gene for epidermolytic palmoplantar keratoderma to the region of the acidic keratin gene cluster at 17q12–q21. Hum. Genet. 90, 113–116 (1992).

    Article  CAS  Google Scholar 

  7. Lessin, S.R., Huebner, K., Isobe, M., Croce, C.M. & Steinert, P.M. Chromosomal mapping of human keratin genes: Evidence for non-linkage. J. invest. Dermatol. 91, 572–578 (1988).

    Article  CAS  Google Scholar 

  8. Romano, V. et al. Chromosomal assignment of cytokeratin genes. Cytogenet. Cell Genet. 46, 683 (1988).

    Google Scholar 

  9. Rosenberg, M., RayChaudhury, A., Shows, T.B., LeBeau, M.M. & Fuchs, E. A group of type I keratin genes on human chromosome 17: Characterization and expression. Molec. Cell. Biol. 8, 722–736 (1988).

    Article  CAS  Google Scholar 

  10. Knapp, A.C. et al. Cytokeratin no.9, an epidermal type I keratin characteristic of a special program of keratinocyte differentiation displaying body site specificity. J. Cell Biol. 103, 657–667 (1986).

    Article  CAS  Google Scholar 

  11. Moll, I., Held, H., Franke, W.W. & Moll, R. Distribution of a special subset of keratinocytes characterised by the expression of cytokeratin 9 in adult and fetal human epidermis of various body sites. Differentiation 33, 254–265 (1987).

    Article  CAS  Google Scholar 

  12. Steinert, P.M. Structure, function, and dynamics of keratin intermediate filaments. J. invest. Dermatol. 100, 729–734 (1993).

    Article  CAS  Google Scholar 

  13. Moll, R., Franke, W.W., Schiller, D.L., Geiger, B. & Krepler, R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31, 11–24 (1982).

    Article  CAS  Google Scholar 

  14. Bonifas, J.M., Rothman, A.L. & Epstein, E.H. Epidermolysis bullosa simplex: Evidence in two families for keratin gene abnormalities. Science 254, 1202–1205 (1991).

    Article  CAS  Google Scholar 

  15. Coulombe, P.A. et al. Point mutations in human keratin 14 genes of epidermolysis bullosa simplex patients: Genetic and functional analyses. Cell 66, 1301–1311 (1991).

    Article  CAS  Google Scholar 

  16. Lane, E.B. et al. A mutation in the conserved helix termination peptide of keratin 5 in hereditary skin blistering. Nature 356, 244–246 (1992).

    Article  CAS  Google Scholar 

  17. Dong, W., Ryynänen, M. & Uitto, J. Identification of a leucine-to-proline mutation in the keratin 5 gene in a family with the generalized Köbner type of epidermolysis bullosa simplex. Hum. Mut. 2, 94–102 (1993).

    Article  CAS  Google Scholar 

  18. Compton, J.G. et al. Linkage of epidermolytic hyperkeratosis to the type II keratin gene cluster on chromosome 12q. Nature Genet. 1, 301–305 (1992).

    Article  CAS  Google Scholar 

  19. Cheng, J. et al. The genetic basis of epidermolytic hyperkeratosis: A disorder of differentiation-specific epidermal keratin genes. Cell 70, 811–819 (1992).

    Article  CAS  Google Scholar 

  20. Chipev, C.C. et al. A leucine-proline mutation in the H1 subdomain of keratin 1 causes epidermolytic hyperkeratosis. Cell 70, 821–828 (1992).

    Article  CAS  Google Scholar 

  21. Rothnagel, J.A. et al. Mutations in the rod domain of keratins 1 and 10 in epidermolytic hyperkeratosis. Science 257, 1128–1130 (1992).

    Article  CAS  Google Scholar 

  22. Lamgbein, L., Heid, H.W., Moll, I. & Franke, W. W. Molecular characterization of the body site-specific human epidermal cytokeratin 9: cDNA cloning, amlno acid sequence, and tissue specifity of geneexpression. Differentiation 55, 57–72 (1993).

    Article  Google Scholar 

  23. Korge, B.P., Compton, J.G., Steinert, P.M. & Mischke, D. The two sizealleles of human keratin 1 are due to a deletion in the glycine-rich carboxyl-terminal V2 subdomain. J. invest. Dermatol. 99, 687–702 (1992).

    Article  Google Scholar 

  24. Korge, B.P., Gan, S.Q., McBride, O.W., Mischke, D. & Steinert, P.M. Extensive size polymorphism of the human keratin 10 chain residues in the C-terminal V2 subdomain due to variable numbers and sizes of glycine loops. Proc. natn. Acad. Sci. U.S.A. 89, 910–914 (1992).

    Article  CAS  Google Scholar 

  25. Mischke, D. Frequencies of human keratin 10 alleles. Hum. molec. Genet. 2, 618 (1993).

    Article  CAS  Google Scholar 

  26. Wanner, R., Förster, H.H., Tilmans, I. & Mischke, D. Allelic variation of human keratins K4 and K5 provide polymorphic markers within the type II keratin gene cluster on chromosome 12. J. invest. Demtatol. 100, 735–741 (1993).

    Article  CAS  Google Scholar 

  27. Weber, J. L Informativeness of human (dC-dA)n (dG-dT)n polymorphisms. Genomics 7, 524–530 (1990).

    Article  CAS  Google Scholar 

  28. Cooper, D.N. & Youssouffian, H. CpG dinucleotide and human genetic disease. Hum. Genet. 78, 151–155 (1988).

    Article  CAS  Google Scholar 

  29. Parry, D.A.D., Crewther, W.G., Fraser, R.D.B. & McRae, T.P. Structure of α-keratin: Structural implications of the amino acid sequences of the type I and type II chain segments. J. molec. Biol. 113, 449–454 (1977).

    Article  CAS  Google Scholar 

  30. Coulombe, P.A. & Fuchs, E. Elucidating the early stages of keratin filament assembly. J. Cell Biol. 111, 153–169 (1990).

    Article  CAS  Google Scholar 

  31. Hovnanian, A. et al. A missense mutation in the rod domain of keratin 14 associated with recessive epidermolysis bullosa simplex. Nature Genet. 3, 327–332 (1993).

    Article  CAS  Google Scholar 

  32. Steinert, P.M. & Parry, A.D. The conserved H1 domain of the type II keratin 1 chain plays an essential role in the alignment of nearest neighbor molecules in mouse and human keratinl/keratin10 intermediate filaments at the two-to four-molecule level of structure. J. biol. Chem. 268, 2878–2887 (1993).

    CAS  PubMed  Google Scholar 

  33. Vassar, R., Coulombe, P.A., Degenstein, L., Albers, K. & Fuchs, E. Mutant keratin expression in transgenic mice causes marked abnormalities resembling a human genetic skin disease. Cell 64, 365–380 (1991).

    Article  CAS  Google Scholar 

  34. Fuchs, E., Esteves, R.A. & Coulombe, P.A. Transgenic mice expressing a mutant keratin 10 gene reveal the likely basisfor epidermolytic hyperkeratosis. Proc. natn. Acad. Sci. U.S.A. 89, 6906–6910 (1992).

    Article  CAS  Google Scholar 

  35. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular cloning. A laboratory manual. 2nd edn. (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  36. Hennies, H.C. & Reis, A. Three dinucleotide microsatellite polymorphisms on human chromosome 13. Hum. molec. Genet. 2, 87 (1993).

    Article  CAS  Google Scholar 

  37. Verma, A.S. & Babu, A. Human chromosomes. Manual of basic techniques. (Pergamon Press, New York, 1989).

  38. Lichter, P. & Cremer, T. Chromosome analysis by non-isotopic in situ hybridisation, in (eds D. E. Rooney, & B. H. Czepulkowski) Human cytogenetics: a practical approach. 2nd edn 157–192 (IRL Press, Oxford, 1992).

    Google Scholar 

  39. Ried, T., Baldini, A., Rand, T.C. & Ward, D.C. Simultaneous visualization of seven different DNA probes by in situ hybridisation using combinatorial fluorescence and digital imaging microscopy. Proc. natn. Acad. Sci. U.S.A. 89, 1388–1392 (1992).

    Article  CAS  Google Scholar 

  40. Cooper, D.N., Smith, B.A., Cooke, H.J., Niemann, S. & Schmidtke, J. An estimate of unique DNA sequence heterozygosity in the human genome. Hum. Genet. 69, 201–205 (1985).

    Article  CAS  Google Scholar 

  41. Orita, M., Suzuki, T.S. & Hayashi, K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5, 874–879 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reis, A., Hennies, HC., Langbein, L. et al. Keratin 9 gene mutations in epidermolytic palmoplantar keratoderma (EPPK). Nat Genet 6, 174–179 (1994). https://doi.org/10.1038/ng0294-174

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0294-174

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing